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Abstract

Embedding tables are usually huge in click-through rate
(CTR) prediction models. To train and deploy the CTR mod-
els efficiently and economically, it is necessary to compress
their embedding tables. To this end, we formulate a novel
quantization training paradigm to compress the embeddings
from the training stage, termed low-precision training (LPT).
Also, we provide theoretical analysis on its convergence. The
results show that stochastic weight quantization has a faster
convergence rate and a smaller convergence error than deter-
ministic weight quantization in LPT. Further, to reduce accu-
racy degradation, we propose adaptive low-precision training
(ALPT) which learns the step size (i.e., the quantization res-
olution). Experiments on two real-world datasets confirm our
analysis and show that ALPT can significantly improve the
prediction accuracy, especially at extremely low bit width.
For the first time in CTR models, we successfully train 8-bit
embeddings without sacrificing prediction accuracy.

1 Introduction
Click-through rate (CTR) prediction is to predict the proba-
bility that a user will click on a recommended item under a
specific context (Cheng et al. 2016), which is a critical com-
ponent in recommender systems. It is widely used in various
scenarios, such as online shopping (Zhou et al. 2018) and
advertising (McMahan et al. 2013). With the development
of deep neural networks, CTR models evolve from logis-
tic regression (McMahan et al. 2013), factorization machine
models (Juan et al. 2016) to deep learning models. Vari-
ous deep CTR models have been proposed and deployed in
industrial companies, such as Wide & Deep (Cheng et al.
2016) in Google, DIN (Zhou et al. 2018) in Alibaba and and
DeepFM (Guo et al. 2017) in Huawei.

Deep CTR models usually follow the embedding ta-
ble and neural network paradigm (Guo et al. 2021a). As
shown in Figure 1, the embedding table transforms the high-
dimensional one-hot encoded vectors of categorical features
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Figure 1: The embedding table and neural network paradigm
of click-through rate prediction models.

(e.g., user id and item id) into low-dimensional real-
valued vectors (i.e., embeddings) (Guo et al. 2017). The neu-
ral network is used to model feature interactions and make
predictions. Usually, each feature has a unique embedding
stored in the embedding table E ∈ Rn×d, where n is the
number of features and d is the embedding dimension. How-
ever, since there are usually billions or even trillions of cat-
egorical features, embedding tables may take hundreds of
GB or even TB to hold (Guo et al. 2021b). For example, the
size of the embedding tables in Baidu’s advertising systems
reaches 10 TB (Xu et al. 2021).

To deploy the CTR models with huge embedding tables
in real production systems efficiently and economically, it
is necessary to compress their embedding tables. Most re-
search on embedding compression in recommender systems
focuses on three aspects: (i) NAS-based embedding dimen-
sion search (Joglekar et al. 2020; Zhao et al. 2020); (ii)
Embedding pruning (Deng et al. 2021; Liu et al. 2021);
(iii) Hashing (Shi et al. 2020; Zhang et al. 2020). Unfortu-
nately, these approaches are usually not practical in real rec-
ommender systems. Specifically, NAS-based approaches re-
quire additional storage and complex calculations to search
for the optimal embedding dimension. Embedding pruning
approaches usually produce unstructured embedding tables
which will cost extra effort to access. Note that the mod-
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els trained with these two approaches should be retrained to
maintain the accuracy. Besides, they can not compress the
embeddings at the training stage, which although hashing
approaches can do, they usually cause severe degradation
in prediction accuracy (Xu et al. 2021; Shi et al. 2020). In
industrial recommender systems, the CTR models with ex-
tremely large embedding tables usually require distributed
training on multiple devices (Xu et al. 2021), where the com-
munication between multiple devices seriously affects the
training efficiency. By compressing the embeddings at train-
ing stages, CTR models can be trained on less devices or
even one single GPU, which can accelerate training by re-
ducing the communication overhead.

In this paper, we aim to compress the large embedding
tables in CTR models from the training stage without sacri-
ficing accuracy. As far as we know, the quantization schemes
in existing work (Xu et al. 2021; Yang et al. 2020) are also
proposed for the same purpose. We term this quantization
scheme as low-precision training (LPT). Specifically, LPT
keeps the weights in low-precision format during training.
Different from the commonly used quantization-aware train-
ing (QAT) (Esser et al. 2020) which keeps a copy of full-
precision weights for parameter update, LPT directly up-
dates low-precision weights and then quantizes the updated
full-precision weights back into low-precision format.

However, without the copy of full-precision weights, LPT
usually suffers from inferior performance than QAT. (Xu
et al. 2021) claims that their maximum ability is using 16-bit
LPT for embeddings, since lower bit-width will cause unac-
ceptable accuracy degradation. Although (Yang et al. 2020)
achieves lossless 8-bit LPT for embeddings, they have to
keep a full-precision cache which brings extra memory cost.
The efforts of (Xu et al. 2021) and (Yang et al. 2020) il-
lustrate that training low-precision embeddings is very chal-
lenging, especially in the case of low bit-width. However,
they are only empirical and lack theoretical analysis for LPT.
Besides, they did not explore the impact of the step size (i.e.,
the quantization resolution) on the accuracy. Therefore, to
explore the limitation of LPT, we first provide theoretical
analysis on its convergence. Further, to reduce accuracy loss,
we propose adaptive low-precision training to learn the step
size. The contributions are summarized as follows:

(1) We formulate a low-precision training paradigm to
compress embedding tables from the training stage and pro-
vide theoretical analysis on its convergence. The results
show that stochastic weight quantization has a faster conver-
gence rate and a smaller convergence error than determinis-
tic weight quantization in LPT.

(2) Different from previous studies, we offer a solution
to learn the step size by gradient descent in LPT, termed
adaptive low-precision training (ALPT).

(3) Experiments are conducted on two public real-world
datasets for CTR predictions. The results confirm our the-
oretical analysis and show that ALPT can significantly im-
prove the prediction accuracy. The code of ALPT is publicly
available1.

1https://gitee.com/mindspore/models/tree/master/research/
recommend/ALPT

2 Preliminaries
In this section, we elaborate on the training process of LPT.
In Section 2.1, we first introduce how quantization works.
In Section 2.2, we introduce the commonly used QAT, as it
is important to understand how LPT differs from it. In Sec-
tion 2.3, we introduce LPT and explain why it can compress
the embedding tables of CTR models at the training stage.

2.1 Quantization
Quantization compresses a network by replacing the 32-bit
full-precision weights with their lower-bit counterparts with-
out changing the network architecture. Specifically, for m-
bit quantization, the set of quantized values can be denoted
as S = {b0, b1, ..., bk}, where k = 2m − 1. One commonly
used quantization scheme is the uniform quantization, where
the quantized values are uniformly distributed, and is usu-
ally more hardware-friendly than the non-uniform quantiza-
tion. In the uniform symmetric quantization, the step size
∆ = bi − bi−1 remains the same for any i ∈ [1, k], and
b0 = −2m−1∆, bk = (2m−1 − 1)∆.

In this paper, we adopt uniform symmetric quantization
on the embeddings. Specifically, given the step size ∆ and
the bit width m, a full-precision weight w is quantized into
ŵ ∈ S, which is represented by the multiplication of the step
size ∆ and an integer w̃:

w̃ = R(clip(w/∆,−2m−1, 2m−1 − 1)), (1)
ŵ = Q(w) = ∆×w̃, (2)

where clip(v, n, p) returns v with values below n set to n
and values above p set to p, R(v) rounds v to an adjacent
integer. There are generally two kinds of rounding functions:

Deterministic Rounding (DR) rounds a floating-point
value to its nearest integer:

RD(x) =

{
⌊x⌋ if x− ⌊x⌋ < 0.5,
⌊x⌋+ 1 otherwise. (3)

Stochastic Rounding (SR) rounds a floating-point value
to its two adjacent integers with a probability distribution:

RS(x) =

{
⌊x⌋ w.p. ⌊x⌋+ 1− x,
⌊x⌋+ 1 w.p. x− ⌊x⌋. (4)

To distinguish the difference in the rounding function, we
add subscript for the quantization function in Eq. (2), that is
QD() and QS() for DR and SR, respectively. Note that ∆
is also an input of the quantization functions Q(w,∆), here
we omit ∆ for simplicity.

2.2 Quantization-Aware Training
As Figure 2(a) shows, quantization-aware training (QAT)
quantizes the full-precision weights in the forward pass and
updates the full-precision weights with the gradients esti-
mated by straight through estimator (STE) (Courbariaux,
Bengio, and David 2015). Specifically, let f(·) be the loss
function and ∇f(ŵt) be the gradients w.r.t. the quantized
weights ŵt. For stochastic gradient descent with a learning
rate of ηt, the full-precision weights will be updated as:

wt+1 = wt − ηt∇f(ŵt). (5)
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(a) Quantization-aware training

(b) Low-precision training

Figure 2: Training processes of quantization-aware training
(QAT) and low-precision training (LPT).

To achieve better accuracy, recent methods have offered
solutions to learn the step size. For example, LSQ (Esser
et al. 2020) uses the following quantization function:

QD(wt
i) = ∆×RD(clip(

wt
i

∆
,−2m−1, 2m−1 − 1)), (6)

and optimizes ∆ through gradient descent where the gradi-
ent of the step size ∆ is estimated by:

∂QD(wt
i)

∂∆
=


−2m−1 if wt

i/∆ ≤ −2m−1,
2m−1 − 1 if wt

i/∆ ≥ 2m−1 − 1,

RD(
wt

i

∆ )− wt
i

∆ otherwise.
(7)

After training, each weight matrix can be stored in the
format of integers plus one full-precision step size. However,
in the training process of QAT, the full-precision weights are
involved in the update process, which means QAT can only
compress the model size for inference.

2.3 Low-Precision Training
As Figure 2(b) shows, unlike QAT which still keeps a
copy of full-precision weights for parameter update, low-
precision training (LPT) directly updates low-precision
weights and then quantize the updated full-precision weights
back into low-precision format as:

ŵt+1 = Q(ŵt − ηt∇f(ŵt)). (8)

For the embedding tables in CTR models, LPT is quite
effective in compression of training memory. Note that em-
bedding tables are usually highly sparse and each batch of
the training data only covers very few features. For example,
in our processed dataset Avazu which has 24 feature fields
and more than 4 million features, a batch of ten thousand
samples only contains 1400 features on average. With LPT,
the whole embedding table can be stored in the format of
integers and only the embeddings of very few features that
appear in each batch will be de-quantized into floating-point
values for calculation and update. The storage of the step
size and the de-quantized floating point weights are negligi-
ble compared to the embedding tables. In this way, LPT can

effectively compress the model at the training stage, how-
ever, the issue of inferior accuracy remains to be resolved.
In this paper, we aim to improve the accuracy of LPT from
the perspective of the rounding function and the step size.

3 Methodology
As discussed in Section 2.3, we need to quantize the up-
dated full-precision weights back into low-precision format
in LPT. When choosing a quantization function, we have to
consider two key issues: (i) which rounding function suits
LPT better? (ii) how to select reasonable step size flexibly
and effectively? To address the first issue, we first analyze
the convergence of LPT in Section 3.1. To address the sec-
ond issue, in Section 3.2, we first point out the difficulties of
learning the step size in LPT, then we introduce our adaptive
low-precision training algorithm.

3.1 Rounding: Stochastic or Deterministic?
Generally, DR is the common choice of quantization as it
produces lower mean-square-error (MSE) (Esser et al. 2020;
Choi et al. 2018). Still, recent works (Xu et al. 2021; Li et al.
2017) argue that SR can achieve better performance in LPT.
However, they did not provide theoretical analysis about the
difference between SR and DR in LPT. Therefore, in this
section, we first provide theoretical analysis on the conver-
gence of SR and DR in LPT, and then we use a synthetic
experiment to visualize the difference between SR and DR.

Convergence Analysis To analyze the convergence for
LPT, we consider empirical risk minimization problems
as in Eq.(9) following (Li et al. 2017). w is used to de-
note all the parameters in a model and the loss function
is decomposed into a sum of multiple loss functions F =
{f1, f2, ..., fm}:

min
w∈W

F (w) :=
1

m

m∑
i=1

fi(w). (9)

At the t-th iteration of the gradient descent, we select a func-
tion f t ∈ F and update the model parameters as:

wt+1 = wt − ηt∇f t(wt). (10)

(Li et al. 2017) already provides convergence analysis for
SR in LPT (Theorem 1). However, it lacks the analysis for
DR. Since DR is biased (i.e., the expectation of the quan-
tization error is not zero), it is quite challenging to extend
the conclusion of Theorem 1 to DR. In Theorem 2, we pro-
vide convergence analysis for DR in LPT, using the same
assumptions as (Li et al. 2017): (i) each fi ∈ F is differ-
entiable and convex; (ii) f t(wt) has bounded gradient, i.e.,
E||∇f t(wt)||2 ≤ G2; and (iii) the domain of w is a convex
set and has finite diameter, i.e., ||wm −wn)||2 ≤ D2.

Theorem 1 [Theorem 2 in (Li et al. 2017)] Assume the
learning rate decays like ηt = η√

t
. At the T -th iteration,

with a fixed step size ∆, for SR in LPT, we have:

E
[
F (w̄T )− F (w∗)

]
≤ D2

2η
√
T

+
ηG2

√
T

+

√
d∆G

2
, (11)
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where w̄T = 1
T

∑T
t=1 w

t, w∗ = argminwF (w) and d is
the dimension of w.

Theorem 2 Assume the learning rate decays like ηt = η√
t

and let T0 = ⌊ 2ηG√
d∆

⌋. At the T -th iteration, with a fixed step
size ∆, for DR in LPT, we have:

E
[
F (w̄T )− F (w∗)

]
≤ D2

2η
√
T

+
3ηG2

√
T

+

√
d∆G

2

+

√
dD∆

∑T0

t=1

√
t

2ηT
+

∑T
t=T0+1 DG

T
.

(12)

The detailed proofs can be found here2. The theorems il-
lustrate that both DR and SR converge to an accuracy floor
in LPT. However, DR has a slower convergence rate and a
larger convergence error than SR, which proves that SR is
more suitable for LPT.

Remark 1 If gradient updates are extremely small and
|ηt∇f(wt

i)|<∆
2 , DR will erase the update of wt

i and wi may
never change from wt

i . Such error accumulation results in
slower convergence rates and larger convergence errors.

Remark 2 Here we only provide analysis based on a fixed
step size. Empirically, we shall show in Section 4 that using
an adaptive step size in Section 3.2 achieves better accuracy.

Synthetic Experiment To visualize the difference of DR
and SR in LPT, we design a simple convex problem:

min
w

f(w) = (w − 0.5)2. (13)

We initialize 1000 parameters between 0 and 1 uniformly.
Each parameter is updated by SGD with learning rate η = 1.
We set ∆ = 0.01 and m = 8 for quantization. Figures 3(a),
3(b), 3(c) show the distribution of the parameters at the iter-
ation t = 10, 100 and 1000, respectively. As we can see, SR
have a similar or even faster convergence rate compared to
the full-precision training, while DR seem to be stagnant as
described in Remark 1. As Figure 3(d) shows, in LPT with
DR, all the gradients satisfy |ηt∇f(wt)|<∆

2 after 10 itera-
tions, that is the moment when the parameters stop updating.

3.2 Adaptive Low-Precision Training
In the previous section, we have demonstrated that SR is
more suitable for LPT, yet another key factor that affects the
performance is the step size. Intuitively, since the representa-
tion range is proportional to the step size given the bit-width,
a small step size will lead to a limited representation range.
On the contrary, a large step size can not provide fine reso-
lution to the majority of weights within the clipping range.
Therefore, it is important to get a reasonable step size. To
figure out how to find the desired step size, we first consider
two preliminary problems:

• Manually or adaptively? If we set the step size as a
hyper-parameter, it will take a lot of human efforts to tune

2https://arxiv.org/abs/2212.05735

(a) t = 10 (b) t = 100

(c) t = 1000 (d) Gradients in DR

Figure 3: (a), (b) and (c) plot the distributions of the param-
eters. FP stands for training with full-precision training; DR
and SR stands for low-precision training with DR and SR,
respectively. (d) plots the number of parameters that satisfy
|ηt∇f(wt)|<∆

2 at different iterations of DR.

the step size for different applications. Nevertheless, the
tuned result may still not be optimal. Thus, we should
make the step size adaptive, that is to learn the step size
together with the embeddings in an end-to-end manner.

• Global-wise or feature-wise? A global step size will be
shared throughout the whole embedding table, which will
fail to trade off the representation range and precision
for all embeddings. Besides, when a global step size up-
dates, all the embeddings are supposed to be re-quantized
with the updated step size, which significantly reduce the
training efficiency. On the contrary, a feature-wise step
size is bound with its owner feature and is free to update.

In light of the above discussions, we should learn a step
size for each embedding. However, there is no gradients for
the step size in LPT as the quantization is taken place after
the backward propagation. To learn the step size, we shall
introduce the step size to the forward propagation. How-
ever, even if we quantize the low-precision embeddings in
the forward propagation like QAT does, the gradients of the
step size will always be zero as the embeddings are already
in low-precision format. To overcome the above challenges,
we propose adaptive low-precision training (ALPT), that is
to learn the low-precision embeddings and the step size al-
ternately as described in Algorithm 1.

Specifically, we learn the model parameters and the step
size in two separate steps. Here we use b as a subscript to
denote the embeddings or the step size of the features in a
batch of the input data and use Q̃(·) to denote the quantiza-
tion function that returns the quantized integers. In the first
step, the integer embeddings w̃t

b will be de-quantized into
floating-point values ŵt

b for the forward propagation, and
then ŵt

b will be updated into full-precision weights wt+1
b .

In the second step, the model will take wt+1
b as input and

quantize them with ∆t
b in the forward propagation similar

4438



Algorithm 1: Adaptive low-precision training

Input: integer embeddings w̃t
b, step size ∆t

b, other param-
eters wt

o and the loss function f .
# Step 1: Update the weights

1: ŵt
b = ∆t

bw̃
t
b;

2: wt+1
b = ŵt

b − ηt
∂f(ŵt

b,w
t
o)

∂ŵt
b

;

3: wt+1
o = wt

o − ηt
∂f(ŵt

b,w
t
o)

∂wt
o

.
# Step 2: Update the step size

4: ∆t+1
b = ∆t

b − ηt
∂f(QD(wt+1

b ,∆t
b),w

t+1
o )

∂∆t
b

;

5: w̃t+1
b = Q̃S(w

t+1
b ,∆t+1

b );
Output: w̃t+1

b ,∆t+1
b ,wt+1

o .

as LSQ. In this way, we can obtain gradient for the step size.
After two steps of optimization, both the model parameters
and the step size are optimized. Then, we quantize wt+1

b

back into integers with ∆t+1
b . Inspired by LSQ, to ensure

convergence, we scale the gradient of the step size and ad-
just its learning rate to achieve optimal performance. Specif-
ically, we set the scaling factor g = 1/

√
bdq, where b is the

batch size, d is the embedding dimension and q = 2m−1−1.

4 Experiments
4.1 Evaluation Protocol
Dataset In this section, we conduct experiments on two
real-world datasets: Criteo 3 and Avazu 4.

• The Criteo dataset consists of 26 categorical feature
fields and 13 numerical feature fields. We discretize each
numeric value x to ⌊log2(x)⌋, if x>2; x = 1 otherwise.
For categorical features, we replace the features that ap-
pear less than 10 times with a default ”OOV” token.

• The Avazu dataset consists of 23 categorical feature
fields. We transform the timestamp field into three new
fields: hour, weekday, and is weekend. Further, we re-
place the categorical features that appear less than twice
with a default ”OOV” token.

For both datasets, we split them in a ratio of 8:1:1 randomly
to get corresponding training, validation, and test sets. Note
that the pre-processing rules are similar to (Zhu et al. 2021).

Settings As presented in (Zhu et al. 2021), the perfor-
mance of different deep CTR models are similar to each
other, therefore we choose DCN (Wang et al. 2017), which
is widely used, as the backbone model. The embedding di-
mension is primarily set to 16 in our experiments. We mea-
sure the performance of the ALPT and the baselines in terms
of AUC and Logloss, which are two commonly-used metrics
for CTR prediction. Note that an increase of 0.001 in AUC is
generally considered as a significant improvement for CTR
prediction asks (Cheng et al. 2016).

3https://www.kaggle.com/c/criteo-display-adchallenge
4https://www.kaggle.com/c/avazu-ctr-prediction

To ensure that the compared baselines are sufficiently
tuned, we refer to the open benchmark for CTR predic-
tion (Zhu et al. 2021) to set up our experiments. We use
Adam (Kingma and Ba 2015) as the optimizer. The learn-
ing rate is set to 0.001 and the maximum number of epochs
is 15. We reduce the learning rate tenfold after the 6th and
9th epochs. For regularization, we set the weight decay of
embeddings to 5e − 8 and 1e − 5 for Avazu and Criteo, re-
spectively. In addition, we adpot a dropout of 0.2 on MLP
for Criteo. For the step size of ALPT, we set its learning rate
to 2e− 5 and adopt the same weight decay and learning rate
decay as the embeddings. All the experiments are run on a
single Tesla V100 GPU with Intel Xeon Gold-6154 CPUs.
Each experiment is performed at least five times.

Baselines To show the superiority of ALPT, we set four
kinds of baselines:
• FP: Full-precision training for embeddings.
• Hashing and Pruning for embeddings. We implement

the hashing method in (Shi et al. 2020) and the embed-
ding pruning method in (Deng et al. 2021) according to
the instructions in the corresponding papers. (Shi et al.
2020) uses the quotient (id/r) and remainder (id%r)
to index two embeddings, where id is the feature id and
r is the compression ratio. The two embeddings will be
multiplied as the final embedding. (Deng et al. 2021)
prunes and retrains the embeddings, where the pruning
ratio gradually increases.

• QAT for embeddings. We implement two of the SOTA
methods: PACT (Choi et al. 2018) and LSQ (Esser et al.
2020). LSQ learns the step size by gradient descent. Sim-
ilarly, PACT is to learn the clipping value (i.e., the range
of quantized weights). Note that we use DR in LSQ and
PACT since DR is the common choice in QAT.

• LPT for embeddings: We implement the vanilla LPT in
(Xu et al. 2021). Following (Xu et al. 2021), we tune the
clipping value among [1, 0.1, 0.01, 0.001].

4.2 Overall Performance
In this section, we will compare the performance of ALPT
and the baselines. Also, we will verify our theoretical analy-
sis about using SR or DR in LPT and ALPT. Note that the bit
width of quantization is set to 8 and the compression ratio of
hashing and pruning is set to 2×.

As Table 1 shows, ALPT achieves lossless compression
and obtains the best accuracy. In contrast, the accuracy
degradation of LPT, hashing or pruning is severe and unac-
ceptable. Compared to LPT, ALPT has significant improve-
ment on the prediction accuracy. Compared to the hashing
and pruning methods, ALPT enables higher compression ra-
tio and better accuracy at the same time. Although LSQ and
PACT achieve comparable prediction accuracy, ALPT out-
performs them at the training memory usage. Note that we
also count the storage of the step size into the embedding
size which slightly weakens the compression capability of
ALPT. However, as the embedding dimension increases, the
effect of the step size on the compression ratio is negligible.

As for the efficiency, we report the training time and in-
ference time of various methods. Specifically, we record the
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Avazu Criteo Compression ratio
AUC Logloss Epochs × Time AUC Logloss Epochs × Time Training Inference

FP 0.7949(±2e-4) 0.37069(±1e-4) 1 × 6min 0.8144(±5e-5) 0.43764(±5e-5) 9 × 9min 1x 1x
Hashing 0.7928(±3e-4) 0.37203(±2e-4) 1 × 6min 0.8119(±7e-5) 0.44130(±6e-5) 11 × 9min 2x 2x
Pruning 0.7926(±2e-4) 0.37202(±1e-4) 1 × 27min 0.8123(±5e-5) 0.44049(±5e-5) 8 × 16min 1x 2x
PACT 0.7948(±2e-4) 0.37074(±1e-4) 1 × 6min 0.8144(±8e-5) 0.43765(±6e-5) 9 × 9min 1x 4x
LSQ 0.7949(±1e-4) 0.37073(±1e-4) 1 × 6min 0.8144(±3e-5) 0.43764(±3e-5) 9 × 9min 1x 4x
LPT(DR) 0.7654(±4e-4) 0.38844(±3e-4) 15 × 6min 0.7966(±1e-4) 0.45306(±1e-4) 15 × 9min 4x 4x
LPT(SR) 0.7927(±2e-4) 0.37205(±1e-4) 1 × 6min 0.8123(±8e-5) 0.43945(±3e-5) 9 × 9min 4x 4x
ALPT(DR) 0.7928(±3e-4) 0.37216(±2e-4) 1 × 7min 0.8096(±2e-4) 0.44198(±2e-4) 6 × 11min 3.2x 3.2x
ALPT(SR) 0.7951(±2e-4) 0.37062(±1e-4) 1 × 7min 0.8144(±3e-5) 0.43763(±3e-5) 9 × 11min 3.2x 3.2x

Table 1: Performance of ALPT and the baselines on Criteo and Avazu.

Avazu Criteo
2-bit 4-bit 2-bit 4-bit

AUC Logloss AUC Logloss AUC Logloss AUC Logloss
PACT 0.7678 0.38604 0.7925 0.37211 0.7900 0.45945 0.8114 0.44030
LSQ 0.7912 0.37317 0.7940 0.37129 0.8089 0.44296 0.8105 0.44278
LPT(SR) 0.7829 0.37806 0.7906 0.37342 0.8009 0.44973 0.8079 0.44379
ALPT(SR) 0.7851 0.37674 0.7919 0.37260 0.8033 0.44760 0.8111 0.44072

Table 2: Accuracy of different quantization methods with smaller bit widths.

Avazu Criteo
d=32 threshold=1 d=32 threshold=2

AUC Logloss AUC Logloss AUC Logloss AUC Logloss
FP 0.7951 0.37055 0.7945 0.37099 0.8123 0.44039 0.8125 0.43975
LPT(SR) 0.7934 0.37162 0.7923 0.37234 0.8119 0.44013 0.8115 0.44036
ALPT(SR) 0.7955 0.37040 0.7946 0.37098 0.8126 0.44000 0.8126 0.43948

Table 3: Accuracy with larger embedding dimension and more categorical features.

average training time of each epoch on the training set and
the average inference time of each step on the validation set.
The inference time of different methods is similar (i.e., about
150 ms for each step). The training time of most methods is
similar and ALPT only takes an extra minute on Avazu and
two extra minutes on Criteo to learn the step size.

Additionally, as shown in Table 1, SR always achieves
better performance than DR. Specifically, in LPT, SR has
a better accuracy and can converge in fewer epochs, which
is consistent with our analysis in Section 3.1. While ALPT
can improve the convergence rate of DR by learning the step
size, however, the convergence accuracy is still far from SR.

4.3 Scalability
In this section, to further validate the effectiveness of ALPT,
we study the scalability of ALPT from three aspects, that is
the bit width of quantization, the embedding dimension and
the number of categorical features, respectively.

Smaller Bit Widths For the quantization methods in Ta-
ble 1, we set the bit width to 4 and 2, respectively. Note
that we have tuned the clipping value among [1, 0.1, 0.01,
0.001] for LPT and set the clipping value to 0.1 for 2-bit and
4-bit quantization. In ALPT, we adopt smaller weight de-
cay for the step size (i.e., 0 for Avazu and 1e-6 for Criteo).
Since lower bit width has a smaller representation range, the
corresponding step size should be larger. As shown in Ta-
ble 2, with different bit widths, the performance of ALPT
is also consistently higher than that of LPT, especially in

2-bit. However, the accuracy gap between ALPT and LSQ
becomes larger as the bit width decreases.

Larger Embedding Dimension In the above experi-
ments, the embedding dimension is set to 16. Here, we in-
crease the embedding dimension to 32 and set the bit width
to 8. As shown in Table 3, with d=32, ALPT significantly
improves the accuracy of LPT and even slightly surpasses
the full-precision embeddings.

More Categorical Features In Section 4.1, we replace the
features that appear less than twice in Avazu or 10 times in
Criteo with a default ”OOV” token, which determines that
Avazu has 4428293 features and Criteo has 1086895 fea-
tures. In this section, to obtain datasets with more categor-
ical features, we decrease the threshold, that is from 2 to 1
for Avazu and from 10 to 2 for Criteo. In this way, Criteo
has 6780382 features and Avazu has 9449238 features. We
conduct experiments with the regenerated datasets to vali-
date the scalability of ALPT on larger datasets. As shown in
Table 3, ALPT has always achieved lossless compression,
which is a comprehensive proof of its good scalability.

4.4 Hyper-Parameters
Inspired by LSQ, we scale the gradient of the step size. The
scaling factor g is tuned among [1, 1/

√
dq, 1/

√
bdq]. How-

ever, we find that the gradient scaling has little influence on
accuracy, instead the learning rate has a significant effect.
As Figure 4 shows, different scaling factors has similar ac-
curacy given the learning rate. In our analysis, each step size
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(a) Avazu

(b) Criteo

Figure 4: AUC under different learning rates and gradient
scaling factors of the step size.

is only responsible for representing the weights in the corre-
sponding embedding, which is easy to fit, so gradient scaling
has little effect. In contrast, the weight decay on the step size
is more sensitive to the learning rate, which makes the learn-
ing rate have a significant impact on the final performance.

5 Related Work
In this paper, a novel adaptive low-precision training
paradigm is proposed to compress the embedding tables
from the training stage. The most related domains are em-
bedding compression and quantization. In this section, we
discuss related work in these two domains.

5.1 Embedding Compression
As we mentioned in Section 1, most research on em-
bedding compression in recommender systems focuses on
three aspects: NAS-based approaches, embedding pruning
and hashing. Specifically, NAS-based approaches search a
proper dimension for each feature to save memory and im-
prove the prediction accuracy. For example, (Joglekar et al.
2020) uses a reinforcement learning algorithm to search the
optimal embedding dimension for users and items, while
(Zhao et al. 2020) adopts differential architecture search
(DARTS) algorithm (Liu, Simonyan, and Yang 2019) to
learn the embedding dimension for each feature field. Con-
sidering that the search processes of these methods are quite
time-consuming, recent works (Chen et al. 2021; Lyu et al.
2022) search for the optimal embedding dimension with
well-designed search strategies. Similarly, parameter prun-
ing reduce the number of weights in the embedding tables
with an unstructured manner. (Deng et al. 2021) prunes and
retrains the embedding table alternatively so that the mistak-

enly pruned weights can grow back. (Liu et al. 2021) main-
tains a learnable threshold to prune the embedding weights.
The learnable threshold will be updated together with other
parameters. Different from them, (Shi et al. 2020) converts
an embedding table into two smaller matrices by two hash
functions. Further, (Zhang et al. 2020) combine frequency
hashing with double hashing for better accuracy. Also, (Yin
et al. 2021; Wang et al. 2020; Xia et al. 2022) adopt tensor
train decomposition to compress the embedding tables. (Su
et al. 2021) reduces the number of embeddings by detecting
and using only beneficial interactions.

5.2 Quantization

The deep learning community has extensive research and
applications on quantization, which can be further divided
into two sub-categories, that is quantizing a pre-trained
model (Banner, Nahshan, and Soudry 2019; Guan et al.
2019; Nagel et al. 2020) or training a quantized model from
scratch (Esser et al. 2020; Hou, Yao, and Kwok 2017). In the
second category, most work follows the quantization-aware
training paradigm (Courbariaux, Bengio, and David 2015;
Rastegari et al. 2016), which quantizes weights in the for-
ward pass and updates the full-precision weights with the
gradients of the quantized weights. Recent works have also
studied the loss-aware quantization (Hou and Kwok 2018;
Hou, Zhang, and J. 2019) which explicitly considers the ef-
fect of quantization on the loss function.

In addition to different quantization paradigms, much
work has explored the key factors of quantization, such as
the step size and the rounding function. For example, (Esser
et al. 2020; Choi et al. 2018) learn the step size and the clip-
ping value by gradient descent, (Hou and Kwok 2018) ap-
proximates the optimal clipping values by second-order op-
timization. (Nagel et al. 2020) studies the rounding function
and propose adaptive rounding. Similarly, other work also
explored the strength of stochastic rounding. (Courbariaux,
Bengio, and David 2015) studies stochastic weight binariza-
tion, (Lin et al. 2016) considers studies stochastic weight
ternarization. (Hou, Zhang, and J. 2019; Chmiel et al. 2021)
consider stochastic gradient quantization. When we ignore
the error caused by the clipping function, stochastic weight
quantization is equivalent to adding a zero-mean error term
(i.e. Gaussian noise) to the weights, which can also be seen
as a form of regularization.

6 Conclusion

In this paper, we formulate the low-precision training
paradigm to compress embedding tables from the training
stage. We provide theoretical analysis on its convergence
with stochastic and deterministic weight quantization, which
shows that stochastic weight quantization is more suitable
for LPT. To reduce accuracy degradation, we further propose
adaptive low-precision training (ALPT) to learn the step size
and embeddings alternately. We conduct experiments on two
real-world datasets which confirm our analysis while vali-
dating the superiority and scalability of ALPT.
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