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ABSTRACT
Multi-behavior recommender systems (MBRS) have been commonly
deployed on real-world industrial platforms for their superior ad-
vantages in understanding user preferences and mitigating data
sparsity. However, the cascade graph modeling paradigm adopted
in mainstream MBRS usually assumes that users will refer to all
types of behavioral knowledge they have when making decisions
about target behaviors, i.e., use all types of behavioral interactions
indiscriminately when modeling and predicting target behaviors
for each user. We call this a full decision chain constraint and ar-
gue that it may be too strict by ignoring that different types of
behavioral knowledge have varying importance for different users.
In this paper, we propose a novel automated decision chain se-
lection (AutoDCS) framework to relax this constraint, which can
consider each user’s unique decision dependencies and select a
reasonable set of behavioral knowledge to activate for the predic-
tion of target behavior. Specifically, AutoDCS first integrates some
existing MBRS methods in a base cascade module to obtain a set
of behavior-aware embeddings. Then, a bilateral matching gating
mechanism is used to select an exclusive set of behaviors for the cur-
rent user-item pair to form a decision chain, and the corresponding
behavior-augmented embeddings are selectively activated. Subse-
quently, AutoDCS combines the behavior-augmented and original
behavior-aware embeddings to predict the target behavior. Finally,
we evaluate AutoDCS and demonstrate its effectiveness through
experiments over four public multi-behavior benchmarks.
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1 INTRODUCTION
Deep recommender systems (DRS) are an important component
in various online service platforms to solve the information over-
load problem faced by users [3, 9, 17, 36]. With the development
of industrial recommendation platforms, a user in DRS may have
multiple types of interactions with an item, including certain target
behaviors that the platform is more concerned about [6, 28, 30]. For
example, the user’s behavior types in an e-commerce platform may
be clicks, collections, buys, etc., with the last one usually being the
target behavior. Different types of behaviors reflect users’ different
levels of decision-making considerations and are potentially related
to the decision-making of target behaviors. Therefore, instead of
only using the user’s target behavior to train a model, integrat-
ing multiple behavior types to train a unified model has attracted
increasing research attention. Deploying a multi-behavior recom-
mender system (MBRS) can leverage knowledge transfer between
behavior types to understand user preferences better and alleviate
target behaviors’ data sparsity.

The key to multi-behavior learning is to capture and exploit the
intrinsic connections between different behavior types and target
behaviors. To this end, several research lines for integrating multi-
behavior information in target behavior modeling are proposed: 1)
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Figure 1: An illustration of a typical cascade graph modeling
paradigm in MBRS, using three behavior types as examples.

the first line treats the target behavior’s interaction and other behav-
iors’ interaction as target data and auxiliary data, respectively, and
uses the priority of the target behavior relative to other behaviors to
design different sampling strategies to construct comparison pairs,
thereby enhancing the modeling of the target behavior [5, 8, 20, 25];
2) the second line focuses on first learning user and item embed-
dings from the interactions of each behavior and then aggregating
them in different ways to model the target behavior [10, 33, 34];
and 3) the third line is to build a unified user-item graph based on
all behaviors and obtain the required embeddings through different
graph embedding learning methods [1, 4, 12, 35]. Among them, as
shown in Fig. 1, cascade graph modeling in the third line is a more
popular paradigm in current MBRS because it aims to imitate the
decision-making path of user target behavior in real scenarios.

Despite promising results, most of these works indiscriminately
use various types of behavioral interactions when modeling and
predicting target behaviors for each user. In other words, they as-
sume that each user will be influenced by their decision-making
knowledge in all behavior types when acting on the target behavior.
In this paper, we refer to the dependence of a user’s target behavior
on the decision-making knowledge of different behavior types as a
decision chain. As shown in the bottom part of Fig. 2, it is obvious
that most existing works follow a full decision chain constraint.
However, we argue that this constraint may be too strict in practice
because it ignores each user’s unique decision dependencies, i.e.,
different types of behavioral knowledge have varying importance
for different users. For example, 1) the user who focuses on regu-
lar purchases within certain collections of items is more likely to
follow a direct decision chain pattern, i.e., they only need to rely
on knowledge of one behavior (i.e., buying) to make decisions; and
2) the experienced user, who puts items into the cart and waits for
the right purchase opportunity, is more likely to follow a partial
decision chain pattern, i.e., knowledge of partial behaviors (add-to-
cart and buying) largely drives their decision-making. Therefore,
selecting appropriate decision chains for different users in MBRS is
necessary.

In this paper, we propose an automated decision chain selection
(AutoDCS) framework to relax the full decision chain constraint
in existing MBRS methods and solve the decision chain selection
problem in multi-behavior settings. The core idea of our AutoDCS
is to use each user’s target behavioral interaction as a guide and
use a set of bilateral matching gates to identify the importance
of different behavior types from the user and item perspectives,
respectively, thereby sequentially determining the dependent be-
havior type knowledge. Specifically, our AutoDCS contains three

(a)

Direct Decision
Chain

Target
Behavior?

(b)

Partial Decision
Chain

Target
Behavior?

(c)

Target
Behavior?

Full Decision
Chain

Dependency Path

Figure 2: An illustration of different types of decision chains,
and we use three behavior types as examples: view, add to
cart, and buy.

customized modules: 1) a base cascade module can integrate some
existing MBRS methods based on cascade graph modeling to ob-
tain a set of behavior-aware embeddings for each user and item,
respectively; 2) a bilateral matching gating module first utilizes
the obtained behavior-aware embeddings to capture the impor-
tance of different behavior type knowledge for the current user-
item target behavior pair and then activates the corresponding
behavior-augmented embeddings for the subset of behavior types
with higher values; and 3) an embedding aggregation module will
integrate behavior-augmented and original behavior-aware embed-
dings to more accurately predict the user’s target behavior. Finally,
we conduct extensive experiments on four public multi-behavior
benchmarks to demonstrate the effectiveness of our AutoDCS.

2 RELATEDWORK
In this section, we briefly review related works on two research top-
ics: multi-behavior recommender systems and automated learning
in deep recommender systems.

2.1 Multi-behavior Recommender Systems
Multi-behavior recommender systems (MBRS) can collect and uti-
lize multiple behavioral types of user-item interactions, such as
views, collections, and buys, to further improve recommendation
performance. Typically, they perform beneficial knowledge transfer
by capturing the potential connections between different behav-
ior types and target behaviors, thereby improving the modeling
and prediction capabilities of each user’s target behavior. Exist-
ing works can be divided into three categories according to how
multi-behavior information is integrated. The first line considers
the priority of the target behavior compared to other behavior
types, and different sampling strategies are developed to obtain
some auxiliary sets from multi-behavior interactions to construct
comparison pairs with the target behavior, thereby enhancing the
training of the model [5, 8, 20, 25]. The second line is based on the
idea of divide and conquer, which first learns reliable user and item
embeddings from each behavioral interaction and then aggregates
them in different ways to serve the modeling and prediction of tar-
get behaviors [7, 10, 33, 34]. The third line uses various customized
graph structures to integrate interactions of different behavioral
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types uniformly and then can obtain various refined embeddings
based on different graph embedding learning methods [1, 4, 12, 35].
However, most existing works ignore that different types of behav-
ioral knowledge have varying importance for different users when
modeling and predicting each user’s target behavior for all candi-
date items. Our AutoDCS first selects a set of informative behavior
types for each user by considering their respective unique decision
dependencies, and it can effectively complement these works.

2.2 Automated Learning in Deep Recommender
Systems

With the rapid development of industrial recommendation plat-
forms, the scale of data, feature sets, and model parameters that
deep recommender systems (DRS) need to face is also increasing.
How to effectively combine automatic machine learning technol-
ogy to remove information redundancy and noise and optimize the
efficiency of recommendation models has become a hot research
topic [38]. For feature sets, many works are devoted to feature
selection from coarse-grained field level and fine-grained value
level, respectively, and some works further consider the selection
of feature interaction combinations with higher contribution to
model performance at higher levels [15, 18, 21, 22, 32]. For model
efficiency optimization, existing works mainly consider several as-
pects, such as adaptive selection of embedding dimensions [19, 23],
reasonable reuse selection of general modules [14, 29], and adaptive
adjustment of model loss and hyperparameters [2, 37]. For training
data, some work aims to automatically select a set of high-value
subsets that are more beneficial to model performance for different
recommendation scenarios, such as traditional recommendation
or online real-time recommendation [16, 31]. Unlike them, our Au-
toDCS targets the decision chain selection behind the user’s target
behavior. This extends automatic machine learning technology to
multi-behavior modeling and helps us better understand the user’s
target behavior decision-making.

3 PROBLEM FORMULATION
In this section, we first give the definition and necessary notation
of multi-behavior learning. We denote the sets of users and items as
U = {𝑢1, 𝑢2, ..., 𝑢𝑀 } and V = {𝑣1, 𝑣2, ..., 𝑣𝑁 }, respectively, where
𝑀 and 𝑁 are the number of users and the number of items, respec-
tively. Without loss of generality, we use {1, 2, · · · , 𝐵} to represent
a behavior order, where 𝐵 is the number of behavior types. For
example, when 𝐵 = 3, we can have {1 : 𝑣𝑖𝑒𝑤, 2 : 𝑐𝑜𝑙𝑙𝑒𝑐𝑡, 3 : 𝑏𝑢𝑦}.
Then, a set of multi-behavior interaction matrices can be obtained,
i.e.,

{
𝑌 1, 𝑌 2, ..., 𝑌𝐵

}
, where 𝑌𝑏 is the interaction matrix of the 𝑏-th

behavior. Note that 𝑌𝐵 is the target behavior interaction matrix we
expect to predict accurately. Since most MBRS focus on implicit
feedback, all interaction matrices are binary and can be defined as,

𝑦𝑏𝑢,𝑣 =

{
1 𝑢 has interacted with 𝑣 under behavior 𝑏,
0 otherwise.

(1)

Based on the above description, we can formalize themulti-behavior
learning in MBRS as follows,
Input: The interaction data of 𝐵 behavior types associated with a
set of usersU and a set of itemsV , i.e.,

{
𝑌 1, 𝑌 2, ..., 𝑌𝐵

}
.

Output: A multi-behavior recommendation model to accurately
predict an item 𝑣 that is most likely to be interacted by a user 𝑢
under the 𝐵-th behavior, i.e., target behavior.

4 THE PROPOSED FRAMEWORK
In this section, we first illustrate the overall framework of our Au-
toDCS. Then, we describe each part of AutoDCS in detail, including
the base cascade module, the bilateral matching gating mechanism,
and the embedding aggregation operation. Finally, we introduce
the optimization goals of our AutoDCS.

4.1 Framework Overview
The automated decision chain selection framework, or AutoDCS
for short, is shown in Fig. 3. First, a base cascade module can be
integrated with some existing MBRS methods based on cascade
graph modeling to obtain a set of behavior-aware embeddings,
i.e., {e(1)𝑢 , e(1)𝑣 , · · · , e(𝐵)𝑢 , e(𝐵)𝑣 }. This means that our AutoDCS fol-
lows the cascaded graph modeling paradigm in mainstream MBRS
and can be lightweight deployed into existing MBRS. Then, our
AutoDCS introduces a customized bilateral matching gating mech-
anism to identify the importance of different types of behavioral
knowledge for target behavior prediction of the current user-item
pair, i.e., {g1𝑢𝑣, g2𝑢𝑣, · · · , g𝐵𝑢𝑣}, where each gate will jointly consist
of user and item perspectives, i.e., g𝑏𝑢𝑣 = [𝑔𝑏𝑢 , 𝑔𝑏𝑣 ]. In addition, a
set of behavior-augmented embeddings {e(1)𝑢 , e(1)𝑣 , · · · , e(𝐵)𝑢 , e(𝐵)𝑣 }
driven by behavioral knowledge will be selectively activated ac-
cording to the discretized gating selection results, i.e., behavior
types with lower values will gradually reduce their knowledge’s
contribution to model training. Finally, our AutoDCS combines
activated behavior-augmented embeddings and original behavior-
aware embeddings to predict the user’s target behavior.

4.2 Framework Description
4.2.1 Initialization. Following the setup of most MBRS, we first
obtain initial embeddings for each user𝑢 ∈ U and item 𝑣 ∈ V from
the embedding table using their corresponding one-hot vectors, re-
spectively. Specifically, we use P ∈ R𝑀×𝑑 and Q ∈ R𝑁×𝑑 to denote
the embedding tables associated with users and items, respectively,
where 𝑑 denotes the embedding size. We also let IDU and IDV

denote the one-hot vector matrices of all users and items since their
unique IDs drive the corresponding one-hot vectors. Therefore, the
embedding initialization for a user 𝑢 and item 𝑣 are computed as
follows,

e0𝑢 = P · IDU𝑢 ∈ R𝑑 , e0𝑣 = Q · IDV𝑣 ∈ R𝑑 , (2)

where IDU𝑢 and IDV𝑣 denote the one-hot vectors corresponding to
the user 𝑢 and the item 𝑣 , respectively. As shown on the left side
of Fig. 3, the obtained initialization embedding will be used as the
input of the base cascade module and is also the original input of
the graph convolution corresponding to the first behavior type.

4.2.2 Base Cascade Module. Existing MBRS methods based on the
cascade graph modeling paradigm usually use a graph convolu-
tional network (GCN) as the core component of the model. Then,
they will construct a GCN-based cascade structure through a behav-
ior order, in which each GCN module learns user-item interactions
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Figure 3: Overview of our AutoDCS framework, and we use three user behavior types as examples: view, add to cart, and buy.

under a specific behavior type to obtain corresponding behavior
knowledge. For ease of description, we take the most concise im-
plementation of MBRS based on the cascade graph paradigm as
an example to introduce the specific process of the base cascade
module. Note that we will also analyze the compatibility of our
framework with some representative cascade graph-based MBRS
methods in the experiments.

Specifically, we use LightGCN [11] as a concrete implementa-
tion of a graph convolution module in this work. Given the input
embedding of a user e(𝑏,0)𝑢 and an item e(𝑏,0)𝑣 at the 𝑏-th behavior,
the propagation embedding process of LightGCN is,

e(𝑏,ℎ+1)𝑢 =
∑︁
𝑣∈N𝑏

𝑢

1√︂���N𝑏
𝑢

���√︂���N𝑏
𝑣

���e(𝑏,ℎ)𝑣 ,

e(𝑏,ℎ+1)𝑣 =
∑︁

𝑢∈N𝑏
𝑣

1√︂���N𝑏
𝑢

���√︂���N𝑏
𝑣

���e(𝑏,ℎ)𝑢 ,

(3)

where e(𝑏,ℎ)𝑢 and e(𝑏,ℎ)𝑣 represent the information embedding of
user 𝑢 and item 𝑣 under behavior 𝑏 at layer ℎ, N𝑏

𝑢 represents the
set of items that user 𝑢 has interacted with at the 𝑏-th behavior,
andN𝑏

𝑣 represents the set of users who have interacted with item 𝑣

at the 𝑏-th behavior. Finally, we aggregate the embeddings of each
layer to obtain the final embedding of a user 𝑢 and an item 𝑣 for
the 𝑏-th behavior,

e(𝑏 )𝑢 =

𝐻∑︁
ℎ=0

e(𝑏,ℎ)𝑢 , e(𝑏 )𝑣 =

𝐻∑︁
ℎ=0

e(𝑏,ℎ)𝑣 , (4)

where 𝐻 is the number of layers. The embedding of the 𝑏-th be-
havior will be directly used as the input of the graph convolution
model of the 𝑏 + 1-th behavior to form a cascade,

e(𝑏+1,0)𝑢 = e(𝑏 )𝑢 , e(𝑏+1,0)𝑣 = e(𝑏 )𝑣 . (5)

Note that for the first behavior type, we have e(𝑏=1,0)𝑢 = e0𝑢 and
e(𝑏=1,0)𝑣 = e0𝑣 . After the base cascade module is executed, we can
obtain a set of behavior-aware embeddings for each user and item,
i.e., {e(1)𝑢 , e(1)𝑣 , · · · , e(𝐵)𝑢 , e(𝐵)𝑣 }, to reflect their different behavioral
knowledge. Theywill serve as input to our bilateral matching gating
mechanism.

4.2.3 Bilateral Matching Gating Mechanism. Since the obtained
behavior-aware user embeddings are driven by a user’s interactions
under each behavior type, they reflect the user’s decision-making
knowledge on different behavior types to a certain extent. To iden-
tify the importance of different types of behavioral knowledge that
each user has when they make target behavior decisions, given
the user embedding of the 𝑏-th behavior, we introduce a user-
perspective gate to measure the contribution of this behavioral
knowledge.

User-perspective gate. Specifically, we feed the user embed-
ding of the 𝑏-th behavior e(𝑏 )𝑢 into a fully connected network for
contribution extraction [13], and additionally apply a softmax oper-
ation with a temperature coefficient to the output layer to facilitate
retrieving the probabilities of “select” and “deselect” actions for this
behavioral knowledge,

h𝑏𝑢 = 𝜎

(
W(𝑏 )1 e(𝑏 )𝑢 + b(𝑏 )1

)
∈ R𝑑 ,

m𝑏
𝑢 = G

(
W(𝑏 )2 h𝑏𝑢

)
∈ R2,

(6)

where W(𝑏 )1 ∈ R𝑑×𝑑 , W(𝑏 )2 ∈ R2×𝑑 and b(𝑏 )1 ∈ R𝑑 denote the
weight metric and bias vector associated with the 𝑏-th behavior,
and 𝜎 (·) is the activation function.G(·) is a softmax function with a
temperature coefficient, whichmakes the obtained two-dimensional
output vectors representing “select” and “deselect” more extreme
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rather than moderate,

G(x) = 𝑒
𝑥𝑗

𝜏∑
𝑗 𝑒

𝑥𝑗

𝜏

, (7)

where 𝜏 is the temperature coefficient. This means that we can
obtain an approximately discrete probability vector through Eq.(6)
to identify whether the target behavior decision of the current user
𝑢 needs to rely on the 𝑏-th behavioral knowledge. Without loss
of generality, we let the latter dimension of the probability vector
represent “select”, i.e., the user-perception gate we finally obtain
can be represented as 𝑔𝑏𝑢 = m𝑏

𝑢 (1). Note that we will follow similar
calculations for each behavior type to obtain their corresponding
user-perspective gates.

Item-perspective gate. However, selecting the decision chain
corresponding to the current user 𝑢 based only on the user perspec-
tive gate means that user 𝑢 will follow the same decision-making
pattern when performing target behaviors on all items. This may
obviously be too strict a constraint. To alleviate this problem, we
further introduce an item-perspective gate driven by the item em-
bedding of the 𝑏-th behavior e(𝑏 )𝑣 , similar to the user-perspective
gate. Specifically, the item embedding of the 𝑏-th behavior e(𝑏 )𝑣

will be fed into a fully connected network shared with the user-
perspective gate,

h𝑏𝑣 = 𝜎

(
W(𝑏 )1 e(𝑏 )𝑣 + b(𝑏 )1

)
∈ R𝑑 ,

m𝑏
𝑣 = G

(
W(𝑏 )2 h𝑏𝑣

)
∈ R2 .

(8)

The approximate discrete probability vector we obtain through
Eq. (8) can be interpreted as whether the 𝑏-th behavior is included
in the target behavior decision path associated with item 𝑣 . In other
words, whether most users will trigger the 𝑏-th behavior before
performing the target behavior on item 𝑣 . Similarly, we let the latter
dimension of the probability vector represent the positive result,
and the item-perception gate we finally obtain can be expressed as
𝑔𝑏𝑣 = m𝑏

𝑣 (1). Note that we will follow similar calculations for each
behavior type to obtain their corresponding item-perspective gates.

Bilateral matching gate. By introducing user-perspective and
item-perspective gates separately, we can combine them to form a
bilateral matching gate g𝑏𝑢𝑣 = [𝑔𝑏𝑢 , 𝑔𝑏𝑣 ] to more flexibly identify the
importance of each behavioral knowledge for the current user-item
pair in modeling. For example, under ideal circumstances, we may
obtain 4 types of bilateral matching gates with discrimination for
a user 𝑢, i.e., g𝑏𝑢𝑣 ← {[1, 1], [1, 0], [0, 1], [0, 0]}. This means that
the model can confidently explore the user and item embeddings
corresponding to the 𝑏-th behavior more (or less) in the first case (or
the fourth case) than in the other cases. In other words, compared to
being based only on the user’s perspective, our proposed bilateral
matching gate is beneficial to better compatibility with a user’s
main decision-making pattern and some special situations.

Behavior-augmented embeddings. To optimize the proposed
bilateral matching gate, a straightforward idea is to multiply them
directly with behavior-aware embeddings and introduce them into
the model training. However, this direct coupling may increase
training difficulty, as the bilateral matching gates or behavior-aware
embeddings that are not fully optimized early in training can easily
adversely affect each other’s descent directions and converge to bad

cases. Therefore, we propose equipping each behavior with an addi-
tional behavior-augmented embedding and associating gates with
them instead of coupling the original embeddings. The behavior-
augmented embeddings for users and items are obtained as follows.

e(𝑏 )𝑢 = 𝜎

(
W(𝑏 )3 e(𝑏 )𝑢 + b(𝑏 )3

)
∈ R𝑑 ,

e(𝑏 )𝑣 = 𝜎

(
W(𝑏 )3 e(𝑏 )𝑣 + b(𝑏 )3

)
∈ R𝑑 ,

(9)

where W(𝑏 )3 ∈ R𝑑×𝑑 and b(𝑏 )3 ∈ R𝑑 denote the weight metric
and bias vector. Then, we selectively activate the corresponding
behavior-augmented embeddings based on the obtained bilateral
matching gates, i.e., {𝑔𝑏𝑢 ∗ e

(𝑏 )
𝑢 , 𝑔𝑏𝑣 ∗ e

(𝑏 )
𝑣 }, and feed them into the

embedded aggregation operation for information integration.

4.2.4 Embedding Aggregation. To motivate the model to consider
the information provided by the bilateral matching gate to exert dif-
ferent degrees of utilization on different behavioral knowledge, we
first need to integrate the activated behavior-augmented embedding
with the original behavior-aware embedding. For simplicity, we
directly combine the original behavior-aware embedding (i.e., e(𝑏 )𝑢

and e(𝑏 )𝑣 ) and the behavior-augmented embedding with different
activation states (i.e., e(𝑏 )𝑢 and e(𝑏 )𝑣 ),

e𝑢 =

𝐵∑︁
𝑏=1

e(𝑏 )𝑢 + 𝑔𝑏𝑢 ∗ e
(𝑏 )
𝑢 ,

e𝑣 =
𝐵∑︁

𝑏=1
e(𝑏 )𝑣 + 𝑔𝑏𝑣 ∗ e

(𝑏 )
𝑣 .

(10)

where e𝑢 and e𝑣 are the final user embedding and item embedding.
Note that we will also analyze different combination methods in
the experiment. Intuitively, when the bilateral matching gate agrees
(or disagrees) on the importance of certain behavioral knowledge,
the final user and item embeddings will (or will not) be affected by
the behavior-augmented embedding to amplify the information of
this behavior. Finally, the model prediction is defined as the inner
product of the final user and item embeddings,

𝑦𝑢𝑖 = e⊤𝑢 · e𝑖 . (11)

where𝑦𝑢𝑖 is the predicted label for the target behavior of the current
user-item pair.

4.3 Framework Training
We need to use user-item target behavior interactions as guiding
information to optimize our framework. Specifically, we use the
standard BPR loss as the objective function in our experiments,

L = − 1
|S|

∑︁
(𝑢,𝑖, 𝑗 ) ∈S

− ln𝛼 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ) + 𝛾 | |Θ| |2, (12)

whereS = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R+, (𝑢, 𝑗) ∈ R−}, R+ is the set of target
behavior interaction instances, R− is a set of negative instances
randomly selected for each positive instance in R+ from a candidate
set of items that the corresponding user has not interacted with
under the target behavior. 𝛼 (·) denotes the sigmoid function, and 𝛾
and ∥Θ∥ are the tradeoff parameter and the regularization terms.
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5 EXPERIMENT
Next, we conduct experiments intending to answer the following
five key questions. Note that the source codes are available at https:
//github.com/dgliu/SIGIR24_AutoDCS.
• RQ1: How does our AutoDCS perform compared to the base-
lines?
• RQ2: What is the role of each key step in our AutoDCS?
• RQ3: What is the impact of multi-behavior information on the
performance of our AutoDCS?
• RQ4: How is the compatibility of our AutoDCS?
• RQ5: What are the characteristics of the decision chain obtained
in our AutoDCS?

5.1 Experiment Settings
5.1.1 Dataset. To evaluate the effectiveness of the proposed Au-
toDCS, following the settings of previous works [6, 12, 24, 35],
we conduct experiments on four public multi-behavior datasets,
including Tmall, Jdata1, Beibei, and Taobao2. These datasets are col-
lected from four e-commerce platforms in China, i.e., Tmall, Beibei,
Taobao, and JD. Among them, Tmall and Jdata include four behav-
ior types, i.e., view, collect, cart, and buy, and Beibei and Taobao
include three behavior types, i.e., view, cart, and buy. We follow the
previous works to resolve the duplicate user-item interactions by
keeping the earliest one for all datasets. We summarize the statistics
of the two processed datasets in Table 1.

Table 1: Statistics of the processed datasets.

Dataset Tmall Beibei Taobao Jdata

#Users 41,738 21,716 15,449 93,334
#Items 11,953 7,997 11,953 24,624
#View 1,813,498 2,412,586 873,954 1,681,430
#Collect 221,514 - - 45,613
#Cart 1,996 642,622 195,476 49,891
#Buy 287,158 304,576 107,629 333,383

5.1.2 Evaluation Protocols. We employ the common leave-one-
out strategy for evaluation by following the settings of previous
works [4, 35]. Specifically, the last interactive item of each user
will be selected as the test set, the second last interactive item will
be used as the validation set for hyper-parameter search, and the
remaining interactive items will be used as the training set. We
evaluate the recommendation performance via two widely used
evaluation metrics, i.e., hit ratio (H@𝑘) and normalized discounted
cumulative gain (N@𝑘). We report the average metrics across all
users in the testing set, where 𝑘 is set to 10, 20, and 50, respectively.
The candidate items to be recommended for a user are from the set
of items with which the user has not interacted.

5.1.3 Baselines. To demonstrate the effectiveness of our AutoDCS,
we select a competitive set ofMBRSmethods as the baselines, includ-
ing MF-BPR [26] and LightGCN [11] for the single-behavior models
and RGCN [27], GNMR [33], NMTR [6], MBGCN [12], CRGCN [35],

1https://github.com/MingshiYan/CRGCN/blob/main/data.zip
2https://github.com/MC-CV/PKEF/tree/main/Datasets

MBCGCN [4], and PKEF [24] for the multi-behavior models. Among
them, CRGCN, MBCGCN, and PKEF fall into line based on the cas-
cade graph paradigm in multi-behavior learning and will serve as a
stronger set of baselines due to being more relevant to our work.

5.1.4 Implementation Details. We implement our AutoDCS in Ten-
sorFlow 1.15. For the adopted baselines, we use the open-source
implementations and parameter settings provided by previous stud-
ies345 [4, 24, 35], where the embedding size is set to 64, the batch
size is set to 1024, Adam is used as the optimizer, and the regu-
larization weight 𝛾 is set to 1𝑒−3 or 1𝑒−4. For our framework, our
search scope includes the number of GNN layers 𝐻 in the range
of {1, 2, 3} and the learning rate in the range of {1𝑒−2, 1𝑒−3, 1𝑒−4}.
The other parameters remained the same as the baselines and an
additional temperature coefficient 𝜏 is set to 1𝑒−3. We perform a
grid search to tune the hyper-parameters by evaluating HR@10.
We also adopt an early stopping strategy, with the patience set to
10 times, to avoid overfitting the training set.

5.2 RQ1: Performance Comparison
We report the comparison results in Table 2. From the results in
Table 2, we can have the following observations: 1) The vast major-
ity of multi-behavior-based learning baselines outperform single-
behavior-based ones, which shows the necessity of considering
multi-behavior interactions in recommender systems; 2) The per-
formance differences between multi-behavior learning baselines
are significant, and it is challenging to utilize multi-behavior in-
teractions effectively; 3) We can observe that methods based on
graph convolution networks can often show certain advantages,
which indicates that the data sparsity problem needs to be seri-
ously considered in multi-behavior learning; 4) The method based
on the cascade graph paradigm shows better advantages among
all baselines, which illustrates the necessity of considering user
decision-making patterns in multi-behavior learning; and 5) Our
AutoDCS consistently outperforms all baselines. This demonstrates
the effectiveness of our AutoDCS. In particular, despite adopting
a simple cascade implementation in the base cascade module, our
AutoDCS still significantly outperforms the same type of cascade
graph-based multi-behavior baselines, i.e., CRGCN, MBCGCN, and
PKEF. This shows that it is beneficial and necessary to consider
each user’s decision-making pattern in MBRS accurately.

5.3 RQ2: Ablation Study
To analyze the contribution of some key steps in AutoDSC, we
conduct an ablation study and report the results in Table 3. We
evaluate the performance of AutoDSC when excluding the intro-
duction of behavior-augmented embedding operations (denoted
as “AutoDSC-s”), excluding the gating discretization operations
(denoted as “AutoDSC-c”), and excluding the decision chain se-
lection mechanism (denoted as “w/o DCS”). In the first case, we
will remove the behavior-augmented embedding in Eq. (10) and
directly associate the bilateral matching gate with the original
behavior-aware embedding. In the second case, we will remove the
temperature coefficient operation for the output layer in Eq. (7) and
3https://github.com/MingshiYan/CRGCN
4https://github.com/SS-00-SS/MBCGCN
5https://github.com/MC-CV/PKEF
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Table 2: Results on all datasets, where the best and second best results are marked in bold and underlined, respectively. Note
that ∗ indicates a significance level of 𝑝 ≤ 0.05 based on a two-sample t-test between our method and the best baseline, and
Improv. denotes the relative improvements over the best baseline.

Dataset Metric Single-behavior Multi-behavior Improv.
MF-BPR LightGCN RGCN GNMR NMTR MBGCN CRGCN MBCGCN PKEF AutoDCS

Tmall

H@10 0.0230 0.0393 0.0316 0.0393 0.0536 0.0549 0.0840 0.1056 0.1268 0.1432∗ 12.93%
N@10 0.0124 0.0209 0.0157 0.0193 0.0286 0.0285 0.0442 0.0565 0.0694 0.0743∗ 7.06%
H@20 0.0316 0.0538 0.0489 0.0619 0.0721 0.0799 0.1238 0.1654 0.1758 0.2105∗ 19.74%
N@20 0.0144 0.0243 0.0198 0.0247 0.0330 0.0345 0.0540 0.0622 0.0814 0.0909∗ 11.67%
H@50 0.0434 0.0813 0.0826 0.1071 0.1037 0.1285 0.1994 0.2483 0.2564 0.3244∗ 26.52%
N@50 0.0166 0.0295 0.0262 0.0332 0.0391 0.0438 0.0685 0.0755 0.0970 0.1130∗ 16.49%

Beibei

H@10 0.0268 0.0309 0.0327 0.0396 0.0301 0.0373 0.0539 0.0579 0.1122 0.1295∗ 15.42%
N@10 0.0139 0.0161 0.0161 0.0219 0.0144 0.0193 0.0259 0.0381 0.0579 0.0677∗ 16.93%
H@20 0.0427 0.0478 0.0561 0.0640 0.0524 0.0639 0.0944 0.0972 0.1743 0.1963∗ 12.62%
N@20 0.0179 0.0204 0.0219 0.0280 0.0200 0.0259 0.0361 0.0404 0.0735 0.0844∗ 14.83%
H@50 0.0793 0.0880 0.1180 0.1219 0.1139 0.1287 0.1817 0.1924 0.2867 0.3181∗ 10.95%
N@50 0.0250 0.0282 0.0329 0.0394 0.0322 0.0386 0.0532 0.0572 0.0958 0.1085∗ 13.26%

Taobao

H@10 0.0076 0.0411 0.0215 0.0368 0.0282 0.0509 0.0855 0.1233 0.1391 0.1522∗ 9.42%
N@10 0.0036 0.0240 0.0104 0.0216 0.0137 0.0294 0.0439 0.0677 0.0778 0.0813∗ 4.50%
H@20 0.0244 0.0546 0.0326 0.0608 0.0642 0.0691 0.1369 0.2007 0.1864 0.2175∗ 8.37%
N@20 0.0155 0.0266 0.0125 0.0263 0.0303 0.0350 0.0676 0.0880 0.0898 0.0977∗ 8.80%
H@50 0.0393 0.0874 0.0411 0.0971 0.1034 0.1117 0.2325 0.3232 0.2686 0.3335∗ 3.19%
N@50 0.0197 0.0338 0.0160 0.0336 0.0383 0.0455 0.0866 0.1134 0.1060 0.1206∗ 6.34%

Jdata

H@10 0.1850 0.2252 0.2406 0.3068 0.3190 0.2803 0.5001 0.5388 0.4515 0.6365∗ 18.13%
N@10 0.1238 0.1436 0.1444 0.1581 0.1914 0.1572 0.2914 0.3630 0.2756 0.4399∗ 21.18%
H@20 0.2192 0.2825 0.3418 0.3694 0.4071 0.3603 0.6190 0.6364 0.5570 0.7140∗ 12.19%
N@20 0.1325 0.1582 0.1588 0.1944 0.2006 0.1790 0.3225 0.3763 0.3035 0.4607∗ 22.43%
H@50 0.2652 0.3658 0.4873 0.4607 0.5375 0.5045 0.7685 0.7581 0.6703 0.8048∗ 4.72%
N@50 0.1417 0.1747 0.1891 0.2029 0.2274 0.1984 0.3535 0.3958 0.3273 0.4803∗ 21.35%

make the value of the bilateral matching gate milder. In the third
case, our AutoDCS will degenerate to an MBCGCN-like structure.
Furthermore, we also evaluate the performance of AutoDSC using
an alternative to summation combination (denoted “AutoDSC-v”),
where the combination method in Eq.(10) is modified to concate-
nate the two embeddings. From the results in Table 3, we have the
following observations: 1) “AutoDSC” vs. “w/o DCS”. A variant
that removes the decision chain selection mechanism significantly
degrades model performance, demonstrating the need to account
for and model each user’s unique decision-making patterns in a
multi-action learning setting. 2) “AutoDSC” vs. “AutoDSC-c”. A
variant that removes the gating discretization operation will most
likely result in the worst performance loss, indicating the need for
more discriminative identification of the importance of different
behaviors in model training. 3) “AutoDSC” vs. “AutoDSC-s”. A
variant that removes behavior-augmented embedding operations
also loses some of the performance gains, suggesting that it is ben-
eficial to introduce behavior-augmented embeddings to ease the
model’s training difficulty. And 4) “AutoDSC” vs. “AutoDSC-v”.
A variant that changes the usage strategy of behavior-augmented
embeddings slightly impacts performance. This illustrates the con-
venience of our AutoDCS in practical applications, especially since
it only requires leveraging behavior-augmented embeddings in a
simple form to achieve good performance.

5.4 RQ3: Impact of Multi-behavior Information
Next, we control the multi-behavior information in the experiments
to measure the impact of two key factors on our AutoDCS, includ-
ing the number of available behaviors and the order of behaviors
considered during modeling. We use Jdata as an example to report
results, and results for other datasets are similar. a) Behavior num-
ber. To study the impact of the number of behaviors on model
performance, we sequentially control for the number of behaviors
available during model training, including considering one behav-
ior type (i.e., buy), two behavior types (e.g., view→buy), and three
types (e.g., view→collect→buy). For the convenience of descrip-
tion, we distinguish all eight cases considered by the labels L1 to L8,
respectively. Their results can be found in the left part of the two
subfigures of Fig. 4. we can observe the following: 1) as expected,
increasing the number of available behaviors will help improve
model performance; and 2) based on the results of L3 and L5, “view”
and “cart” behaviors are more likely to be useful in capturing users’
decision-making patterns than “collection”, i.e., they are more likely
to be the types of behaviors that users rely on in their decision-
making paths. b) Behavior order. To study the impact of behavior
order on model performance, we disrupt the behavior order in
different ways while using four fixed types of behavior. For the
convenience of description, we distinguish all five cases considered
by the labels O1 to O5, respectively. Their results can be found
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Table 3: Results of the ablation studies on all datasets, where the best results are marked in bold.

Dataset Tmall Taobao

Metric H@10 N@10 H@20 N@20 H@50 N@50 H@10 N@10 H@20 N@20 H@50 N@50

AutoDCS 0.1432 0.0743 0.2105 0.0909 0.3244 0.1130 0.1522 0.0813 0.2175 0.0977 0.3335 0.1206

AutoDCS-v 0.1404 0.0722 0.2073 0.0886 0.3171 0.1119 0.1520 0.0806 0.2157 0.0966 0.3328 0.1197

AutoDCS-s 0.1375 0.0700 0.2041 0.0864 0.3234 0.1097 0.0849 0.0462 0.1279 0.0570 0.2114 0.0734

AutoDCS-c 0.0894 0.0457 0.1330 0.0562 0.2089 0.0709 0.0891 0.0468 0.1310 0.0573 0.2094 0.0728

w/o DCS 0.1056 0.0565 0.1654 0.0622 0.2483 0.0755 0.1233 0.0677 0.2007 0.0880 0.3232 0.1134

Dataset Beibei Jdata

Metric H@10 N@10 H@20 N@20 H@50 N@50 H@10 N@10 H@20 N@20 H@50 N@50

AutoDCS 0.1295 0.0677 0.1963 0.0844 0.3181 0.1085 0.6365 0.4399 0.7140 0.4607 0.8048 0.4803

AutoDCS-v 0.1246 0.0638 0.1883 0.0798 0.3099 0.1038 0.6262 0.4264 0.7059 0.4504 0.8036 0.4700

AutoDCS-s 0.1189 0.0624 0.1790 0.0775 0.2937 0.1001 0.6024 0.3953 0.7021 0.4219 0.8039 0.4437

AutoDCS-c 0.1186 0.0616 0.1787 0.0770 0.2907 0.0988 0.4640 0.2730 0.5689 0.3004 0.6882 0.3253

w/o DCS 0.0579 0.0381 0.0972 0.0404 0.1924 0.0572 0.5388 0.3630 0.6364 0.3763 0.7581 0.3958
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Figure 4: Performance difference of AutoDCS w.r.t. different number and order of behaviors on Jdata. Best viewed in color.

in the right part of the two subfigures of Fig. 4. We can observe
that incorrect cascade paths usually have a certain impact on the
model’s performance. As shown by O2 and O3, this phenomenon
is more obvious when the “collect” behavior is the first behavior
of the cascade. This may be because the “collect” behavior has less
influence on the user’s decision-making path than the “view” and
“cart”, thus affecting the ability to identify the decision chain.

5.5 RQ4: Compatibility Evaluation
To verify the compatibility of AutoDCS in MBRS, we integrate dif-
ferent cascading graph-based MBRS methods in the base cascade
module and evaluate the performance of our AutoDCS compared
to their original versions. In our experiments, we use two recent
representative methods on this research line, i.e., MBCGCN [4]
and PKEF [24]. We take Tmall and Taobao as examples to show
their results in Fig. 5, and the results for other datasets are similar.
After integrating our AutoDCS, we can observe that all cascade

graph-based backbone models significantly outperform their origi-
nal versions in all metrics. This shows that our AutoDCS has good
compatibility properties, which benefits deployment in various
realistic MBRS scenarios. Furthermore, it demonstrates that our
AutoDCS can effectively alleviate the full decision chain constraints
adopted in existing MBRS methods.

5.6 RQ5: In-depth Analysis of AutoDCS
Finally, we conduct an in-depth analysis of the different decision
chain patterns captured by our AutoDCS for each user during train-
ing. The first key question is whether our AutoDCS can capture
different user decision-making patterns. To answer this question,
we first utilize the obtained bilateral matching gates to classify the
decision chain patterns and then count their respective ratios. Tak-
ing Beibei as an example, since it contains two pre-behaviors before
the “buy” behavior, i.e., “view” and “cart”, we can get the following
four categories: {𝐶1 : [0, 0];𝐶2 : [0, 1];𝐶3 : [1, 0];𝐶4 : [1, 1]}. They
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Figure 5: Recommendation performance of our AutoDCS with different downstreammodels, i.e., MBCGCN and PKEF, on Tmall
and Taobao. Best viewed in color.
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Figure 6: Performance difference of AutoDCS w.r.t. different decision chain categories on Jdata. Best viewed in color.

respectively indicate that user 𝑢 does not rely on these two behav-
iors, relies on the “cart” behavior, the “view” behavior, and both
behaviors. The ratios of different categories of decision chains are
shown in Table 4. We can observe that our AutoDCS can identify
different decision-making patterns for different users.

Table 4: The ratio of the obtained decision chains on different
categories, where C1 to C4 represent a direct decision chain
without viewing and adding to cart, a partial decision chain
without viewing or adding to cart, and a full decision chain,
respectively.

Categories C1 C2 C3 C4

Ratio (%) 38.76 24.10 22.35 14.79

The second key question is whether our AutoDCS can bring
additional performance gains to user groups that do not satisfy the
constraints of the full decision chain. To answer this question, we
first divide each user into two sets according to the corresponding
decision chain category, i.e., those that satisfy the full decision
chain constraints (denoted as “Full”) and those that do not satisfy
the full decision chain constraints (denoted as “Non-Full”). Then,
we compare the performance of our AutoDCS and PKEF models
in the two sets, respectively. The results are shown in Fig. 6. We
can find that our AutoDCS has a significant performance gain
on set “Non-Full”. This shows that our AutoDCS can achieve a
better target behavior prediction result by relaxing the originally
too strict constraints of the full decision chain for these users. In
particular, when the value of 𝑘 is large enough, our AutoDCS’s

performance on set “Non-Full” can be even better than that on set
“Full”. Furthermore, we additionally observe that our AutoDCS also
brings gains on set “Full”. This suggests that identifying reasonable
decision chain patterns for each user may help obtain better item
embeddings and thus also facilitate target behavior prediction for a
set of users that satisfies the complete decision chain constraints.

6 CONCLUSIONS
In this paper, we propose an automated decision chain selection (Au-
toDCS) framework to address the decision chain selection problem
for multi-behavior recommender systems, i.e., selecting a reason-
able set of behavioral knowledge to activate for each user-item in-
teraction pair. Specifically, our AutoDC contains three customized
modules: 1) a base cascade module can integrate some existing
MBRS methods to obtain a set of behavior-aware embeddings; 2) a
bilateral matching gating mechanism first utilizes the obtained em-
beddings to capture the importance of different types of behavioral
knowledge for the target behavior prediction of the current user-
item pair and then activates the corresponding behavior-augmented
embeddings for the subset of behavior types with higher values;
and 3) an embedding aggregation module will integrate behavior-
augmented embeddings and original behavior-aware embeddings
to predict the user’s target behavior. Finally, we evaluate AutoDCS
and demonstrate its effectiveness through experiments over four
public multi-behavior benchmarks.
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