
AutoOpt: Automatic Hyperparameter Scheduling and
Optimization for Deep Click-through Rate Prediction

Yujun Li∗
Noah’s Ark Lab

China
liyujun9@huawei.com

Xing Tang∗
Noah’s Ark Lab

China
xing.tang@huawei.com

Bo Chen∗
Noah’s Ark Lab

China
chenbo116@huawei.com

Yimin Huang
Noah’s Ark Lab

China
yimin.huang@huawei.com

Ruiming Tang
Noah’s Ark Lab

China
tangruiming@huawei.com

Zhenguo Li
Noah’s Ark Lab

China
Li.Zhenguo@huawei.com

ABSTRACT
Click-through Rate (CTR) prediction is essential for commercial rec-
ommender systems. Recently, to improve the prediction accuracy,
plenty of deep learning-based CTR models have been proposed,
which are sensitive to hyperparameters and difficult to optimize
well. General hyperparameter optimization methods fix these hy-
perparameters across the entire model training and repeat them
multiple times. This trial-and-error process not only leads to subop-
timal performance but also requires non-trivial computation efforts.
In this paper, we propose an automatic hyperparameters scheduling
and optimization method for deep CTR models, AutoOpt, making
the optimization process more stable and efficient. Specifically, the
whole training regime is firstly divided into several consecutive
stages, where a data-efficient model is learned to model the relation
between model states and prediction performance. To optimize
the stage-wise hyperparameters, AutoOpt uses the global and local
scheduling modules to propose proper hyperparameters for the
next stage based on the training in the current stage. Extensive
experiments on three public benchmarks are conducted to validate
the effectiveness of AutoOpt. Moreover, AutoOpt has been deployed
onto an advertising platform and a music platform, where online
A/B tests also demonstrate superior improvement. In addition, the
code of our algorithm is publicly available in MindSpore1.

CCS CONCEPTS
• Information systems→ Display advertising; Recommender
systems.

∗All authors contributed equally to this research.
1https://gitee.com/mindspore/models/tree/master/research/recommend/autoopt

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’23, September 18–22, 2023, Singapore, Singapore
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0241-9/23/09. . . $15.00
https://doi.org/10.1145/3604915.3608800

KEYWORDS
CTR Prediction, Hyperparameter optimization, Recommendation,
Online advertising

ACM Reference Format:
Yujun Li, Xing Tang, Bo Chen, Yimin Huang, Ruiming Tang, and Zhenguo
Li. 2023. AutoOpt: Automatic Hyperparameter Scheduling and Optimization
for Deep Click-through Rate Prediction. In Seventeenth ACM Conference
on Recommender Systems (RecSys ’23), September 18–22, 2023, Singapore,
Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3604915.3608800

1 INTRODUCTION
Click-through rate (CTR) prediction is critically important for rec-
ommender systems and online advertisement systems [3, 14, 34].
Recently, plenty of deep learning-based CTRmodels are proposed to
improve the prediction accuracy, including FNN [43], DeepFM [13],
DCN [40], and so on. Generally, these deep CTR models mainly
consist of three main components: embedding component that
projects input features into latent space [29]; feature interaction
component that captures explicit feature interactive signals [2, 28];
and deep component that models sophisticated high-order im-
plicit feature interactions [8, 13].

However, training a deep CTR model well and giving full play
to its advantages is not easy [42]. Firstly, during the model training
procedure, setting appropriate optimizer parameters (e.g., learn-
ing rate) contributes to the efficient learning of model parameters,
which is highly related to the convergence speed and prediction ef-
fect. Secondly, due to the data sparsity problem that widely exists in
CTR prediction, regularization technique (e.g., 𝐿1 and 𝐿2 normaliza-
tion [22], dropout [15]) is introduced to improve the generalization
of deep neural networks [30]. Therefore, it is of great significance
to provide proper regularization strength for alleviating this issue.
Thirdly, for deep CTR models, different components face diverse
degrees of sparsity. For example, embedding components suffer
from sparse input features [35] (like long-tailed features and cold-
start users), while feature interaction and deep components may
encounter more severe sparsity problems due to the less-frequent
high-order interactions [26]. Hence, it is vitally important to per-
form component-level regularization in a fine-grained manner, so
that effective training procedures for deep CTR models can be ob-
tained. Consequently, searching appropriate optimization-related
hyperparameters is conductive to improving the performance of

183

https://doi.org/10.1145/3604915.3608800
https://doi.org/10.1145/3604915.3608800
https://doi.org/10.1145/3604915.3608800
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3604915.3608800&domain=pdf&date_stamp=2023-09-14

RecSys ’23, September 18–22, 2023, Singapore, Singapore Yujun, Xing and Bo, et al.

1e-3 1e-4 1e-5 1e-6

1e-3

1e-4

1e-5

1e-6

lr=1e-2

1e-3 1e-4 1e-5 1e-6

1e-3

1e-4

1e-5

1e-6

lr=1e-3

1e-3 1e-4 1e-5 1e-6

1e-3

1e-4

1e-5

1e-6

lr=1e-4

1e-3 1e-4 1e-5 1e-6

1e-3

1e-4

1e-5

1e-6

lr=1e-5

0.74

0.76

0.78

0.75

0.76

0.77

0.78

0.79

0.77

0.78

0.79

0.80

0.77

0.78

0.79

0.80

Figure 1: An example of grid search on regularization of
IPNN. The X-axis represents the coefficient of embedding
_𝑒𝑚𝑏 , The Y-axis is the coefficient of deep _𝑑𝑒𝑒𝑝 .

deep CTR models. Figure 1 indicates that the prediction accuracy
of deep CTR models varies significantly with the learning rate of
optimizer and component-level regularization coefficients.

Searching optimal structure-related hyperparameters for deep
CTRmodels has made great progress, such as embedding dimension
search [19, 46], neural architecture search, including feature interac-
tions [47], network layers and width [45], activation functions [45],
as well as operation functions [37]. Nevertheless, prior work on how
to search suitable optimization-related hyperparameters (including
learning rate, component-level 𝐿1, 𝐿2 normalization coefficients,
dropout ratio, etc.) is scarce, motivating us to conduct in-depth re-
search. A straightforward method is grid search [16], which shrinks
to a discrete search space with 𝑛 candidate values for finding the
optimal parameters brutely. However, when a deep CTR model
contains𝑚 optimization-related hyperparameters that need to be
searched, the complexity of search space by grid search is O(𝑛𝑚),
which requires a huge amount of computation to find the optimal
hyperparameters. Moreover, limited by the grid size, the optimal hy-
perparameters existing in the continuous search space are difficult
to be explored. As illustrated in Figure 1, it is highly possible that
even better performance can be obtained outside the search space,
such as optimal _𝑑𝑒𝑒𝑝 lying between 10−5 and 10−6. To overcome
the disadvantages of the grid search, some general hyperparame-
ter optimization (HPO) methods are proposed [10]. Generally, the
whole model training process is repeated multiple times to search
for the optimal hyperparameters. Combining Bayesian optimization
with the hyperband strategy, BOHB [9] reduces the repeated times
of training. Nevertheless, repeating the whole training process mul-
tiple times is tedious and costs too much computation, because
CTR prediction is a time-sensitive task and requires fast training to
meet periodic model update requirements. Besides, existing search
methods fix hyperparameters in one single trial-and-error process,
which lacks exploiting valuable information during training. Some
research has empirically demonstrated that hyperparameter sched-
uling helps to improve the model performance [5, 38].

In this paper, to tackle the above issues raised by previous studies,
we propose AutoOpt, an Automatic hyperparameters scheduling
and Optimization method for training deep CTR models. To exploit
the dynamic training information, we reformulate the hyperpa-
rameter optimization problem as several consecutive subproblems.
Specifically, AutoOpt divides the entire training process into several
stages, where the optimization-related hyperparameters are held
constant in each stage and the proposed hyperparameters for the
next stage are learned based on the previous one. To adjust the
stage-wise hyperparameters more efficiently and stably, AutoOpt
utilizes multi-worker parallel training to provide more modeling
data. Specifically, each stage consists of three phases:model training
in the current stage, global scheduling based on parallel training
dynamic, and local scheduling based on the current best result. In
all, the contributions of our work are summarized as follows:
• WeproposeAutoOpt to automatically search suitable optimization-
related hyperparameters for deep CTR prediction. The component-
level regularization is performed in a fine-grained manner for
achieving an effective and stable model training procedure.

• We provide a stage-wise approach to search and schedule the
hyperparameters. Moreover, a multi-worker parallel training
system is further proposed to make the search process more
stable and efficient.

• Extensive experiments offline and online validate the effective-
ness of AutoOpt. Moreover, AutoOpt has been deployed on a
real-world system of millions of users and improves the perfor-
mance of several mainstream deep CTR models.
We organize the rest of this paper as follows. In Section 2, we

briefly review related works. In Section 3, we give some preliminar-
ies on CTR models. In Section 4, we present our method AutoOpt.
Section 5 details the experimental setting and corresponding re-
sults on benchmarks. Online results deploying AutoOpt are demon-
strated in Section 6. Finally, we conclude this work in Section 7.

2 RELATEDWORK
2.1 Deep CTR Prediction
Deep CTR prediction has been investigated a lot in recent years [44].
Factorization-Machine Supported Neural Networks (FNN) [43] is
a forward neural network using factorization machine (FM) [33]
as the pretrained embedding layer. However, this network only
takes the high-order implicit feature interaction into consideration.
Wide&Deep (WDL) [8] was initially proposed by Google, which
jointly learns linear models and deep neural networks to model
feature interactions. In this work, feature engineering is required,
which depends on expertise experience. To overcome this, DeepFM
[13] replaces the wide part of WDL with FM and shares the feature
embedding between the FM and deep component. To improve the
performance, many works focus on modeling feature interaction
explicitly. DCN [40] efficiently captures feature interactions with
cross layers. Similarly, xDeepFM [25] proposes a novel Compressed
Interaction Network (CIN) to model both the low-order and high-
order feature interactions in an explicit way. However, training
a deep CTR model well is not easy because several optimization-
related parameters need to be carefully tuned. To achieve this, we
propose AutoOpt to automatically search suitable optimization-
related hyperparameters for deep CTR models.

184

AutoOpt RecSys ’23, September 18–22, 2023, Singapore, Singapore

2.2 Hyperparameter Optimization
For deep models, the involved hyperparameters can be divided into
two groups: structure-related hyperparameters (e.g., embedding
size, layers of networks) and optimization-related hyperparameters
(e.g., learning rate, regularization coefficient). Searching optimal
structure-related hyperparameters automatically has made great
progress, such as embedding dimension search in NIS [19] and
AutoDim [46], neural architecture search, including feature inter-
actions in AIM [47], network layers and width in AMEIR [45],
activation functions in AMEIR [45], as well as operation functions
in AutoCTR [37]. Nevertheless, researchers seldom set foot in the
context of searching suitable optimization-related hyperparameters
for CTR models. To avoid the huge computation of grid search,
Auto𝐿2 [24] proposes a dynamical schedule for the regularization
parameter 𝐿2 automatically. Bayesian optimization (BO) [4] is a
widely studied approach that adjusts the hyperparameters accord-
ing to the model evaluation. However, it is not time-efficient since
each evaluation requires a whole training process. BOHB [9] com-
bines Bayesian optimization with successive halving which pays
more attention to potential hyperparameters. Besides, PBT [17]
improves time-efficiency by parallelly exploring hyperparameter
space. But it consumes a lot of computing resources since it re-
quires 32 or more workers to conduct sufficient exploration. Au-
toLRS [18] reduces the computation time of model evaluation by
mutual-training between BO and loss forecasting model. However,
it will suffer unstable training due to the uncertainty of the loss
forecasting model. _opt [7] is the first to introduce fine-grained
regularization into matrix factorization for recommender systems.
However, it cannot be applied to deep CTR models due to its com-
plex computation. These existing methods keep the hyperparam-
eters of regularization fixed during training, while our method
adjusts the hyperparameters adaptively along with the training,
which is helpful to improve the model performance [5].

3 PRELIMINARY
For the CTR prediction task, the data is collected as multi-field,
where each feature field contains either categorical values or nu-
merical values. In the pre-processing phase, numerical features
are usually transformed into categorical form by bucketing or
some other methods [12]. Hence, the input features are denoted
as x = [𝑥1, 𝑥2, ..., 𝑥𝑚], where𝑚 is the number of fields. Then, an
embedding layer is applied upon the multi-field input data, trans-
forming each raw feature to a dense real-value vector as,

𝒆𝑖 = 𝑽 𝑖x𝑖 ,

where 𝑽 𝑖 ∈ R𝑛𝑖×𝑑 is the embedding table for the 𝑖-th field, x𝑖 is the
one-hot vector, 𝑛𝑖 is the total number of feature values and 𝑑 is the
embedding dimension. Then the𝑚 vectors are concatenated into
𝒆 = [𝒆1, 𝒆2, . . . , 𝒆𝑚].

To improve model performance, deep CTR models usually em-
ploy various feature interaction layers to explicitly learn the
feature interactions. An example is the cross layer in DCN[40],
which is denoted as follows:

𝒙𝑘 = 𝒙0𝒙
𝑇
𝑘−1𝒘𝑘 + 𝒃𝑘 + 𝒙𝑘−1,

where 𝒙𝑘 ∈ R𝑑 is the vector denoting the output from the 𝑘-th
cross layer, and𝒘𝑘 , 𝒃𝑘 ∈ R𝑑 are the weight and bias parameters of
the 𝑘-th layer.

Besides, another important component deep layer is utilized to
model high-order feature interactions implicitly, which is formu-
lated as:

𝒙𝑘 = 𝜎

(
𝑾𝑘𝒙𝑘−1 + 𝒃𝑘

)
,

where𝑾𝑘 and 𝒃𝑘 are the weight and bias of the 𝑘-th deep layer
respectively, 𝜎 is an activation function. Finally, an output layer
is used to predict the click probability 𝑦 for each instance [23]. A
widely-used Logloss is adopted for training the model, which is
noted as:

𝐿𝑜𝑔𝑙𝑜𝑠𝑠 = − 1
𝑄

𝑄∑︁
𝑖=1

(𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)),

where 𝑦𝑖 is the ground truth of user click label and 𝑦𝑖 is the esti-
mated value of the 𝑖-th instance, respectively.𝑄 is the total number
of training instances in the training set. With input data (𝒙, 𝑦) fol-
lowing the training data distribution, we define the loss function
with regularization to ensure the generality,

𝐿𝑡𝑟𝑎𝑖𝑛 (Θ|_) = E(𝒙,𝑦)𝐿𝑜𝑔𝐿𝑜𝑠𝑠 (𝒙, 𝑦 | Θ) + Ω(Θ | _),

where Θ is model parameters consisting of embedding component
𝑽 , feature interaction component𝒘 and deep component𝑾 . Ω(·)
denotes regularization terms. _ denotes different coefficients for
component-level regularization.

4 THE PROPOSED METHODOLOGY
In this section, we first formulate the hyperparameter scheduling
problem. Based on the formulation, we describe our proposed Au-
toOpt framework.

4.1 Problem Formulation
As mentioned in Section 3, training a deep CTR model well is not
easy, which requires the correct tuning of many parameters, such as
regularization coefficients _, learning rate 𝛼 and dropout ratio Y [24].
To search the optimal optimization-related parameters Λ = (_, 𝛼, Y),
the computation procedure is stated as the following optimization
problem,

min
Λ
𝐿𝑣𝑎𝑙 (Θ(Λ)) (1)

s.t. Θ(Λ) = argmin𝐿𝑡𝑟𝑎𝑖𝑛 (Θ | Λ) . (2)

Eq.(1) is the outer optimization where 𝐿𝑣𝑎𝑙 (·) indicates the model
performance on validation data. Eq.(2) is the inner optimization
with optimization-related parameters Λ which optimizes the model
parameters Θ.

The above optimization problem shows that the goal of hyper-
parameter tuning is to find the optimal Λ to make the model obtain
the optimal performance on the validation dataset. A naive method
is to optimize the model in Eq.(2) over the whole training data with
every possible hyperparameter via grid search and then choose
the one with the best performance evaluated on Eq.(1). However,
the search overhead is unaffordable in practice due to time and
resource constraints in practical CTR prediction. Besides, changing
the suitable hyperparameters during the model training procedure

185

RecSys ’23, September 18–22, 2023, Singapore, Singapore Yujun, Xing and Bo, et al.

Stage 1 Stage 2 Stage t Stage T

¼

 : Evaluate performance

 : Collect metrics

Update CTR model

¼

 : Loss with

regularization

Model training Global scheduling

Metric data

arrangement

Performance

model fitting

Propose

hyperparameters

 : Log likehood,

Locate best

hyperparameter

Determine

update direction

Compute

Propose

hyperparameters

interpolation & extrapolation Take a local step

Local scheduling

Stage t
Stage t+1

Figure 2: One stage of AutoOpt. Model training phase trains CTR models with hyperparameters from the previous stage.
Performance fitting phase fits a model of performance. Hyperparameter proposal phase proposes potential hyperparameters
for the next stage.

is conducive to accelerating convergence and improving CTR pre-
diction performance.

To achieve both time-efficient and resource-efficient hyperpa-
rameter search for CTR models, we split one full training run into𝑇
stages (shown in the blue block in Figure 2), where each stage has𝐾
epochs. At the 𝑡-th stage, the model parametersΘ and optimization-
related hyperparameters Λ are initialized with Θ𝑡 and Λ𝑡 respec-
tively, and the optimization objective can be formulated as follows,

min
Θ𝑡

𝐿𝑡𝑟𝑎𝑖𝑛 (Θ𝑡 |Λ𝑡) (3)

𝑠 .𝑡 . Λ𝑡 = Φ(Λ𝑡−1,Θ𝑡) (4)
Θ = {𝑽 ,𝒘,𝑾 } (5)
Λ = {_𝑒𝑚𝑏 , _𝑑𝑒𝑒𝑝 , _𝑖𝑛𝑡𝑒𝑟 , 𝛼, Y, . . . }, (6)

where Θ𝑡 is updated by 𝐿𝑡𝑟𝑎𝑖𝑛 for 𝐾 epochs, Φ is the scheduler to
update Λ𝑡 based on the previous Λ𝑡−1. At the next stage, the model
is initialized with (Θ𝑡+1,Λ𝑡+1) and repeats the optimization proce-
dure. By dividing the whole optimization procedure into multiple
optimization stages, the search process can be significantly acceler-
ated. Moreover, the hyperparameters can be optimized dynamically
according to the model rewards received from different stages.

4.2 AutoOpt
In this section, we propose an automatic hyperparameters schedul-
ing and optimization method to solve the above problem. We start
with a quick introduction to the system design and then go through
the details of each part.

4.2.1 System Design. To improve the stability and efficiency of hy-
perparameter exploration in AutoOpt, we propose amulti-worker
parallel training scheme (shown in Figure 2), and the algorithm
is presented in Algorithm 1. The entire training process is divided
into multiple stages, where AutoOpt deploys 𝑁 workers for parallel
training in each stage. Each stage consists of three phases. Phase
1 is the model training, each worker initializes the model weight
with the best model checkpoint from the last stage and updates
model weights Θ with an assigned hyperparameter Λ. In Phase
2, the global scheduling module accumulates training metrics col-
lected from 𝑁 workers and learns a performance prediction model
to propose potential hyperparameters. And in Phase 3, the local

scheduling module updates the current best hyperparameter in a
heuristic way.

Algorithm 1 The AutoOpt Algorithm

1: Input: Hyperparameter space H , worker number 𝑁 , stage
number 𝑇 , epoch number 𝐾 for each stage, initial network
weight Θ0.

2: Initialize hyperparameters by sampling 𝑁 hyperparameters
from H and setting the 𝑖-th worker Λ(𝑖) . Initialize network
weights of each worker as Θ(𝑖)

0 = Θ0.
3: for 𝑡 = 1, ...,𝑇 do
4: for 𝑖 = 1, ..., 𝑁 do
5: With Λ(𝑖) , update the 𝑖-th worker’s network weights in

Model Training.
6: Collect metrics S (𝑖) along the training process.
7: end for
8: The global scheduling module gathers metrics of 𝑁 workers,

learns a performance prediction model, and proposes 𝑁 − 1
potential hyperparameters from the entire search space.

9: The local scheduling module locates the current best hyper-
parameter Λ∗, determines the update direction in two cases,
and proposes one hyperparameter by taking a local step.

10: Return 𝑁 new hyperparameters {Λ′(𝑖) }𝑁
𝑖=1 for the next stage.

11: end for

4.2.2 Model Training. At the first stage, 𝑁 workers are initialized
with randomized hyperparameters. At the following stages,𝑁 work-
ers are configured with hyperparameters from the global and local
scheduling modules. To make the CTR model have a good predic-
tion ability to facilitate subsequent hyperparameter search, the first
phase in each stage is to train the CTR model in 𝐾 epochs over
the training data and update model weights. Then, an evaluation
process is performed to estimate the performance of the warmed-up
model, and several metrics are collected to present the prediction
performance. Specifically, for the 𝑘-th epoch, we use the metrics
including training loss, training AUC, validation loss to represent
the model state, i.e., 𝒔𝑘 = {𝑙𝑜𝑠𝑠𝑡𝑟𝑎𝑖𝑛

𝑘
, 𝑎𝑢𝑐𝑡𝑟𝑎𝑖𝑛

𝑘
, 𝑙𝑜𝑠𝑠𝑣𝑎𝑙

𝑘
}, and use the

validation AUC as indicator to reflect its prediction performance,
i.e., 𝑦𝑘 = 𝑎𝑢𝑐𝑣𝑎𝑙

𝑘
. Note that the model weights Θ are excluded due

to the limited extra computation budget.

186

AutoOpt RecSys ’23, September 18–22, 2023, Singapore, Singapore

4.2.3 Global Scheduling. The global scheduling process aims to
propose potential hyperparameters from the entire search space in a
global optimal perspective. To achieve this, we leverage the metrics
collected from the model training phase that reflect the model states
𝒔𝑘 and performance 𝑦𝑘 of the current stage, to build a performance
model. Specifically, the collected metrics along the model training
phase can be regarded as the time series of model performance
with respect to states. Therefore, given a fixed hyperparameter Λ,
to capture the relation between model state 𝒔𝑖 and the subsequent
model performance 𝑦𝑖+Δ𝑡 of the CTR model after Δ𝑡 epochs, a
performance prediction model 𝑓 (·) is proposed:

𝑓 (Λ, 𝒔𝑖 ,Δ𝑡) = 𝑦𝑖+Δ𝑡 . (7)

To learn an effective regression model 𝑓 (·), two issues should be
carefully considered. Firstly, data used to train the prediction model
is collected along the model training, making only a small number
of samples available. As a result, many commonly used regression
models [6] which rely on a large amount of data cannot satisfy
this requirement. Secondly, the collected data is noisy due to the
unstable model training process. To overcome these issues, AutoOpt
leverages Gaussian process [11] to capture the relation between
model states and model performance, which assumes that models
with close hyperparameters have nearly similar performance [9, 10].

Worker 1

Worker N

¼

Model training

ckpt

Performance

model fitting

Sample

arrangement

Data from

Worker 1

Data from

Worker 1

Model training

ckpt

Model training

ckpt ¼

Model training

ckpt

Hyperparameters

proposal

Global scheduling

Figure 3: A window sliding strategy to arrange samples for
performance prediction model.

Sample Arrangement. The samples for the performance predic-
tion model 𝑓 (·) are accumulated by a window sliding strategy at
each stage, as shown in Figure 3. For each worker after 𝐾 epochs
model training in the 𝑡-th stage, we can collect 𝐾 model states
{𝒔1, 𝒔2, ..., 𝒔𝐾 } and 𝐾 performance results {𝑦1, 𝑦2, ..., 𝑦𝐾 }. Then, the
samples of the 𝑡-th stage are constructed as {{(Λ𝑡 , 𝒔0,Δ𝑡, 𝑦0+Δ𝑡)}𝐾Δ𝑡=1,
{(Λ𝑡 , 𝒔1,Δ𝑡, 𝑦1+Δ𝑡)}𝐾−1

Δ𝑡=1, . . ., {(Λ𝑡 , 𝒔𝐾−1,Δ𝑡, 𝑦𝐾−1+Δ𝑡)}1Δ𝑡=1}, where
𝒔0 is the model state of the last stage, Δ𝑡 denotes the epoch num-
ber. As a result, 𝑁 workers collect 𝑁 (𝐾 + 1)𝐾/2 samples in each
stage. We renumber the samples with 𝑀 = 𝑁 (𝐾 + 1)𝐾/2, and
thus get training samples S = {(Λ1, 𝒔1,Δ𝑡1, 𝑦1), (Λ2, 𝒔2,Δ𝑡2, 𝑦2), ...,
(Λ𝑀 , 𝒔𝑀 ,Δ𝑡𝑀 , 𝑦𝑀)}. Thanks to the multi-worker parallel training
framework, more training data can be collected, facilitating the
fitting of the performance prediction model.

Specifically, assume that the samples follow amultivariate Gauss-
ian distribution with a mean of zero,

[𝑦1, 𝑦2, ..., 𝑦𝑀] ∼ N (0, Σ), (8)

where covariance matrix Σ has Σ𝑖 𝑗 = K([Λ𝑖 , 𝒔𝑖 ,Δ𝑡𝑖], [Λ 𝑗 , 𝒔 𝑗 ,Δ𝑡 𝑗])
andK(·, ·) is the kernel function.We choose an automatic relevance

determination form of the kernel [32] to express each dimension
as being independent of others,

K(𝒙, 𝒙′) = 𝜎2𝑦 exp(
𝑑1+𝑑2+1∑︁
𝑝=1

−
(𝒙 [𝑝] − 𝒙′[𝑝])

2

2𝑙2𝑝
), (9)

where 𝒙 = (Λ, 𝒔,Δ𝑡) denotes a vector concatenated by Λ ∈ R𝑑1 ,
𝒔 ∈ R𝑑2 and Δ𝑡 ∈ R, 𝒙 [𝑝] is the 𝑝-th feature in 𝒙 . 𝜎𝑦 is the sig-
nal variance and 𝑙𝑝 is the length scale. For convenience, let 𝑿 =

[𝒙1, 𝒙2, . . . , 𝒙𝑀]⊤ ∈ R𝑀×(𝑑1+𝑑2+1) and 𝒀 = [𝑦1, 𝑦2, ..., 𝑦𝑀]⊤ ∈ R𝑀 .
To learn the prediction model, we can maximize the log-likelihood,

max
𝜎𝑦 ,𝑙𝑝

log 𝑃 (𝒀 |𝑿) = −1
2
𝒀⊤Σ−1𝒀 − 1

2
log |Σ| − 𝑀

2
log 2𝜋. (10)

Observed data

Posterior mean
Candidate

Figure 4: Gaussian process for performance prediction. The
curve is the posterior mean of different candidate hyperpa-
rameters. The shaded area shows the 95% confidence interval.

Hyperparameter Proposal. After the performance fitting phase,
AutoOpt is dedicated to proposing hyperparameters for the next
stage. As illustrated in Figure 4, we can get the posterior distribution
of the performance prediction,

𝑃 (𝑦 | 𝑿 , 𝒀 ,Λ, 𝒔,Δ𝑡) = N(𝑘⊤1 Σ
−1𝒀 , 𝑘11 − 𝑘⊤1 Σ

−1𝑘1), (11)

where 𝑘1 = [K(𝒙, 𝒙1), ...,K(𝒙, 𝒙𝑀)]⊤ denotes the vector of covari-
ances between the current state and the 𝑀 training states, and
𝑘11 = K(𝒙, 𝒙) denotes the covariance of the current state. Given
model state 𝒔 and epoch number Δ𝑡 , every possible hyperparameter
Λ corresponds to a different posterior distribution of 𝑦. The goal
is to obtain an expected advantage of the predicted performance
over the baseline as high as possible. Therefore, AutoOpt chooses
expected improvement to select scheduling hyperparameters,

𝐸𝐼 (Λ | 𝒔,Δ𝑡) =
∫

[𝑦 − 𝑦∗]+𝑃 (𝑦 |𝑿 , 𝒀 ,Λ, 𝒔,Δ𝑡)d𝑦, (12)

where the state with the best performance is chosen as anchor state
𝑠 , [·]+ = max(·, 0), 𝑦∗ is the reference performance which is set to
be the current best performance.

4.2.4 Local Scheduling. The global scheduling process proposes
the potential hyperparameters globally from the entire search space
by fitting a performance model. The effectiveness of the proposed
hyperparameters depends on the accuracy of the performance
model. Although the multi-worker parallel training scheme pro-
vides more training data to improve prediction accuracy and en-
sures adequate hyperparameter exploration, resource efficiency is
also important for industrial applications. To achieve the balance
between efficiency and effectiveness, AutoOpt deploys a heuristi-
cally local scheduling algorithm to search the hyperparameters and
guarantee ample exploitation. Suppose that the underlying relation-
ship between model performance and hyperparameters is smooth.

187

RecSys ’23, September 18–22, 2023, Singapore, Singapore Yujun, Xing and Bo, et al.

Therefore, AutoOpt aims to update the current best hyperparameter
towards a good direction at the next stage. The direction is decided
by a heuristically local scheduling algorithm with interpolation.

The local scheduling algorithm takes a coordinate way to update
each coordinate of hyperparameters. Firstly, AutoOpt finds the
current best hyperparameters Λ∗ with the highest validation AUC,

Λ∗ = argmax
Λ∈Λ𝐶

max
Δ𝑡

ValidAUC(Λ,Δ𝑡), (13)

where Λ𝐶 denotes all the hyperparameters of 𝑁 workers. Then,
the update direction 𝑑 should be determined. Finally, a local step is
taken to update Λ∗ towards the heuristic direction 𝑑 .

As shown in Figure 5, for the 𝑖-th coordinate, there are two cases
according to the location of Λ∗

𝑖
: (1) Λ∗

𝑖
is not the closest to the

boundaries of search space (left subfigure); (2) Λ∗
𝑖
is the closest to

the boundaries of search space (right subfigure). The two nearest
points to Λ∗

𝑖
are Λ′

𝑖
and Λ′′

𝑖
.

hyperparameter

AUC

hyperparameter

AUC

Figure 5: Examples for Case (1) and (2). The red lines repre-
sent search space boundaries of the 𝑖-th coordinate.

In Case (1), we choose the Lagrange interpolation method to get
a polynomial through the tree points and obtain a quadratic curve.
Note that the optimal point Λ̂∗

𝑖
along the curve locates between Λ′

𝑖
and Λ′′

𝑖
since the quadratic curve is unimodal. The update direction

is given by 𝑑 = 𝑠𝑔𝑛(Λ̂∗
𝑖
− Λ∗

𝑖
), where 𝑠𝑔𝑛(·) is a sign function.

As for infrequent Case (2), Λ∗
𝑖
is the closest to the boundary of

the search space. Therefore, the coordinate search space should
be shifted or set larger. Thus, we take an optimistic update by
pushing the next hyperparameter closer to the boundary and choose
a simple linear extrapolation to decide its update direction by 𝑑 =

𝑠𝑔𝑛(Λ∗
𝑖
− Λ′

𝑖
). Note that 𝑠𝑔𝑛(Λ∗

𝑖
− Λ′

𝑖
) = 𝑠𝑔𝑛(Λ∗

𝑖
− Λ′′

𝑖
).

5 EXPERIMENTS
5.1 Experiment Setup
5.1.1 Dataset. We evaluate the performance of our method on
three benchmark datasets in this paper. The basic statistics are
presented in Table 1.

Criteo2: It is one week of display advertising data released by
CriteoLab, which is widely used in CTR prediction. The data con-
tains nearly 45 million click records, which contain 13 numerical
feature fields and 26 categorical feature fields. We set the categories
appearing less than 100 times as a dummy category “other”.

Avazu3: This dataset was provided by Avazu to predict whether
a mobile ad will be clicked. It contains about 40 million click logs
in 10 days with 23 categorical feature fields. Categorical features
with less than 20 times of appearance are replaced by the dummy
category “other”.

2http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/.
3http://www.kaggle.com/c/avazu-ctr-prediction.

KDD124: It is published in KDD-cup 2012 track 2 and investi-
gated in FFM [20]. To reduce the dimensionality, we sample the
data with features appearing more than 15 times. The sampled data
contains 11 categorical fields and more than 37 million click logs.

Table 1: Statistics of the datasets

Dataset #Instances #Categories #Fields Pos Ratio
Criteo 45,840,000 184,964 39 0.26
Avazu 40,428,000 211,610 23 0.17
KDD12 37,358,042 3,747,904 11 0.05

Note that we split all these datasets randomly into three parts:
80% for training, while 10% for validation and 10% for testing, fol-
lowing [25].

5.1.2 Evaluation Metrics. The evaluation metrics are AUC (Area
Under ROC) and log-loss (cross-entropy). AUC is a widely used
metric for evaluating CTR prediction, and a larger value indicates
a better result. Log-loss is the loss in CTR prediction, which is
also a widely used metric in binary classification, and a smaller
value means better performance. Note that an improvement of 0.1%
in AUC is usually regarded as significant for the CTR prediction
[39]. All the experiments are repeated 5 times to get the average
performance. The two-tailed unpaired 𝑡-test is performed to detect
a significant difference between AutoOpt and the best baseline.

5.1.3 Baseline Methods and Implementation Details. We compare
AutoOpt and seven baseline methods, including LR decay [41], two
variants of grid search, PBT [17], AutoLRS [18], BO [36], BOHB [9],
AutoL2 [24] on several mainstream deep CTR models. There are
brief introductions to these methods.
• LR-Decay is a popular technique for training neural networks,
which decays the learning rate by a certain factor after pre-
defined epochs.

• Grid-Same is the grid search method, where a global regulariza-
tion coefficient is used for different components.

• Grid-Componet is the grid search method, where component-
level regularization coefficients are searched for different compo-
nents.

• PBT uses multiple workers to explore hyperparameter space and
update hyperparameters by adding noises [17].

• AutoLRS reduces the computation time of model evaluation by
mutual-training between BO and loss forecasting model.

• BO is a sequential model-based approach to find the global opti-
mal value [36], which can be used to tune the hyperparameters
in recommender systems [10].

• BOHB combines the benefits of both BO and Hyperband [9],
which is commonly used for hyperparameters search due to its
efficiency and effectiveness.

• AutoL2 is a recently proposed method for adaptively adjusting
the 𝐿2 regularization term, which has achieved good results in
computer vision [24].
All of the parameters in these methods are fine tuned in our

experiments. To fully express the compatibility, we apply various
4http://www.kddcup2012.org/c/kddcup2012-track2/data

188

AutoOpt RecSys ’23, September 18–22, 2023, Singapore, Singapore

mainstream deep CTR models in recent research as backbone mod-
els: DeepFM [13], IPNN [31], DCN [40], and xDeepFM [25]. In IPNN,
regularization for embedding components and deep components
is required. For DeepFM, DCN, and xDeepFM, a regularization for
feature interaction component is introduced besides the embedding
component and deep component.

5.1.4 Search Space. Following the search space in [25] and [31],
we define the continuous search space of Λ as listed below,

• _𝑒𝑚𝑏 ∈ [1𝑒 − 7, 1𝑒 − 3],
• _𝑑𝑒𝑒𝑝 ∈ [1𝑒 − 7, 1𝑒 − 3],
• _𝑖𝑛𝑡𝑒𝑟 ∈ [1𝑒 − 7, 1𝑒 − 3],
• 𝛼 ∈ [1𝑒 − 6, 1𝑒 − 2],
• Y ∈ [0.5, 1].

The search space is also used for AutoLRS, BO, BOHB, and AutoL2.
As for the grid search, we set the search step as 0.5 in the logarithmic
scale, which produces a discrete search space.

5.1.5 Implementation Details. For a fair comparison, the embed-
ding dimension is set to 64 for Criteo and Avazu dataset, and 16 for
the KDD12 dataset. For the optimization method, we use the Adam
[21] with a mini-batch size of 1000 for all the datasets. The hidden
layers of the deep component are fix to 512-256-128 by default,
and all activation functions are RELU. Besides, the explicit feature
interactions modeling in DCN and xDeepFM (namely, cross layer
and CIN) are set to 2 layers. For AutoOpt, the number of stages
is set to 𝑇 = 10, the epoch number of each stage is set to 𝐾 = 5,
and the number of workers is set to 𝑁 = 8 by default. We conduct
our experiments on a Linux server with 18 Intel Xeon Gold 6154
cores, 128 GB memory, and four NVIDIA-V100 GPUs with PCIe
connections.

5.2 Overall Performance
Table 2 presents the overall performance of AutoOpt and other base-
lines with several mainstream backbone models on three datasets.
The observations can be summarized as follows.
• AutoOpt outperforms all the SOTA baselines over three datasets
by a significant margin. Besides, the improved performance of Au-
toOpt over various backbone CTR models is significant and con-
sistent, demonstrating the superiority and robustness in search-
ing the optimal hyperparameters adaptively.

• Grid-Component performs better than Grid-Same, which indi-
cates that component-level regularization is important for deep
CTR models. However, searching fine-grained regularization co-
efficients will involve additional burden, bringing higher require-
ments for efficient hyperparameter search.

• In comparison with grid search, HPO methods (e.g., PBT, Au-
toLRS, BO, BOHB, AutoL2, AutoOpt) perform better in most
cases. This is because grid search restricts hyperparameters to
discrete search space, while others explore in continuous space.

• Among the HPO methods, BO and BOHB fix the hyperparame-
ters in each repeated training process, while AutoOpt schedules
hyperparameters along with training adaptive, thus getting bet-
ter performance. Compared with PBT, AutoLRS and AutoL2, our
proposed AutoOpt employs the Bayesian optimization method
to capture the relation between model states and performance.
Besides, a multi-worker parallel training scheme is proposed to

ensure a more robust training process. In all, AutoOpt achieves
superior performance by adaptively scheduling fine-grained hy-
perparameters along with model training.

5.3 Effectiveness and Efficiency
In this section, we investigate the effectiveness and efficiency of
AutoOpt compared with five baselines. Table 3 summarizes the
computation cost of different methods measuring in GPU hours,
where DeepFM is the used backbone model and the dataset is Criteo.
From this, we have the following observations:

Firstly, Grid-Component costs mostly due to its large discrete
search space, while Grid-Same reduces the cost with the same
coefficient for all components (with worse prediction accuracy).
Secondly, BO needs to repeat the procedure of training multiple
times, which also costs a lot. BOHB introduces hyperband to reduce
some hyperparameters that perform not well, thus requiring less
search cost than BO. Finally, AutoOpt and AutoL2 are time-efficient
because they schedule hyperparameters during training. Note that
the reason why AutoL2 costs less is that it only introduces rule-
based scheduling, while AutoOpt learns a model to predict optimal
hyperparameters and employs a parallel training scheme to get
better performance.

To further understand the trade-off between effectiveness and
efficiency, we illustrate the prediction AUC and the training GPU
hours of different methods with different backbone models in Fig-
ure 6. Points in the left upper area of the space are well performed
in both effectiveness and efficiency.

From Figure 6 we can find that, although AutoL2 is the most
efficient method, its predefined rule for scheduling prevents it from
gaining better performance. Besides, BO has comparable perfor-
mance on some models but costs too much on xDeepFM, which
is the most complex model among backbone models. BOHB intro-
duces the hyperband technique to reduce the computation cost
but still costs more to gain performance compared with AutoOpt.
Instead, AutoOpt achieves the best performance with relatively few
GPU hours, showing superior effectiveness and efficiency. We at-
tribute it to the superiority of the stage-wise scheduling algorithm
and multi-worker parallel training scheme.

5.4 Ablation Study
Moreover, to present the effects of different optimization-related
hyperparameters, we apply AutoOpt to the DCN backbone model.
Specifically, we remove each scheduling hyperparameter from Au-
toOpt and fix it during the model training process. From Figure 7
we can find that searching all hyperparameters with AutoOpt can
achieve the best performance. Besides, compared with other hy-
perparameters, scheduling the learning rate and regularization
coefficient of deep components among the training procedure can
obtain higher profits.

5.5 Hyper-Parameters Sensitivity
To study the effects of training epochs 𝐾 in each stage and the
number of workers 𝑁 for AutoOpt, we conduct several hyperpa-
rameters studies on Avazu dataset with DeepFM as the backbone. In
the left subfigure of Figure 8, we compare model performance with
different training epochs 𝐾 in fixed training cost, i.e., 𝑇 ∗ 𝐾 = 50

189

RecSys ’23, September 18–22, 2023, Singapore, Singapore Yujun, Xing and Bo, et al.

Table 2: Overall performance comparison in test dataset of different hyperparameter search methods with several popular
backbone models in three datasets. The best results in baseline methods are marked by underline, and the AutoOpt results are
emphasized in bold. ★ represents significance level 𝑝-value< 0.05 of comparing AutoOpt with the best baselines.

Dataset Method IPNN DeepFM DCN xDeepFM
AUC logloss AUC logloss AUC logloss AUC logloss

LR-Decay 0.79770 0.45298 0.79307 0.45711 0.78200 0.46662 0.79891 0.45184

Criteo

Grid-Same 0.80179 0.44994 0.80364 0.44833 0.80341 0.44896 0.80382 0.44889
Grid-Componet 0.80285 0.44911 0.80479 0.44677 0.80471 0.44679 0.80506 0.44611

PBT 0.80034 0.45546 0.80211 0.45301 0.80351 0.44840 0.80242 0.44872
AutoLRS 0.79689 0.45367 0.79609 0.45437 0.79537 0.45503 0.79913 0.45169

BO 0.80439 0.44678 0.80412 0.44693 0.80459 0.44680 0.80455 0.44678
BOHB 0.80460 0.44659 0.80422 0.44687 0.80424 0.44687 0.80530 0.44598
AutoL2 0.80407 0.44752 0.80432 0.44684 0.80381 0.44741 0.80220 0.44980
AutoOpt 0.80618★ 0.44520★ 0.80721★ 0.44432★ 0.80699★ 0.44450★ 0.80809★ 0.44347★
% Improv. 0.196% 0.311% 0.300% 0.548% 0.283% 0.512% 0.346% 0.562%
LR-Decay 0.76836 0.38634 0.76401 0.38877 0.75544 0.39328 0.76588 0.38772

Avazu

Grid-Same 0.76525 0.38816 0.76646 0.38773 0.76465 0.38857 0.77016 0.38581
Grid-Component 0.76649 0.38787 0.76946 0.38732 0.76662 0.38764 0.77382 0.38498

PBT 0.77380 0.38330 0.77107 0.38430 0.76855 0.38608 0.77155 0.38392
AutoLRS 0.76565 0.38802 0.76350 0.38921 0.76322 0.38921 0.76753 0.38685

BO 0.77449 0.38346 0.77321 0.38417 0.77324 0.38388 0.77410 0.38312
BOHB 0.77478 0.38333 0.77332 0.38364 0.77265 0.38395 0.77390 0.38351
AutoL2 0.77236 0.38427 0.77153 0.38449 0.77084 0.38483 0.76940 0.38737
AutoOpt 0.77614★ 0.38242★ 0.77515★ 0.38310★ 0.77426★ 0.38316★ 0.77489★ 0.38260★
% Improv. 0.175% 0.237% 0.236% 0.140% 0.131% 0.187% 0.102% 0.135%
LR-Decay 0.79154 0.16011 0.78535 0.16316 0.78215 0.16529 0.79759 0.15947

KDD12

Grid-Same 0.78241 0.16291 0.78254 0.16284 0.77527 0.16491 0.78395 0.16288
Grid-Component 0.78385 0.16265 0.78324 0.16234 0.78428 0.16256 0.79290 0.16037

PBT 0.77014 0.16619 0.78130 0.16565 0.77327 0.16234 0.80042 0.15823
AutoLRS 0.78778 0.16136 0.78572 0.16353 0.78266 0.16224 0.79762 0.15906

BO 0.79127 0.16057 0.79228 0.15987 0.79075 0.16040 0.80069 0.15812
BOHB 0.79162 0.16038 0.79149 0.15992 0.79826 0.15892 0.80093 0.15811
AutoL2 0.78584 0.16186 0.78497 0.16202 0.78523 0.16196 0.77926 0.16588
AutoOpt 0.79552★ 0.15931★ 0.79486★ 0.15943★ 0.80261★ 0.15803★ 0.80380★ 0.15720★
% Improv. 0.492% 0.667% 0.325% 0.275% 0.544% 0.560% 0.358% 0.575%

AutoL2

AutoOpt

BOHB

BO

DeepFM

DCN

xDeepFM

IPNN

Figure 6: Effectiveness and efficiency comparison of various methods with mainstream deep models in Criteo dataset.

and the number of workers is 𝑁 = 8. The results show that the
model with𝐾 = 2 increases faster in the early training process since

it adjusts hyperparameters more frequently. However, it does not
converge to the best performance, because of insufficient data for

190

AutoOpt RecSys ’23, September 18–22, 2023, Singapore, Singapore

AutoOpt w/o lr w/o inter w/o deep w/o emb w/o dropout
0.796

0.798

0.800

0.802

0.804

0.806

0.808

0.810

AU
C

Figure 7: Ablation study experiments on Criteo dataset by removing different scheduling hyperparameters.

Table 3: Search cost onCriteo dataset (measured inGPUhour)

Grid-Same Grid-Componet BO BOHB AutoL2 AutoOpt
402.6 3650.7 341.6 118.3 5.2 43.1

0 10 20 30 40 50
epochs

0.764

0.766

0.768

0.770

0.772

0.774

AU
C

K=2
K=5
K=10

10 20 30 40 50
epochs

0.760

0.762

0.764

0.766

0.768

0.770

0.772

0.774

AU
C

N=4
N=6
N=8

Figure 8: The effects of training epochs 𝐾 in each stage and
the number of workers 𝑁 . The X-axis indicates the accumu-
lated epochs.

modeling performance in each stage. Conversely, the model with
𝐾 = 10 rarely adjusts the coefficients in the training but converges
quickly to low accuracy. We find that setting 𝐾 = 5 epochs enables
the model to get the best performance.

In the right subfigure of Figure 8, we comparemodel performance
with the different numbers of workers 𝑁 . We can get that the model
with more workers has better performance, but it takes nearly linear
growth of computation resources. Hence, we set the worker number
as 𝑁 = 8 due to its good trade-off between efficiency and model
performance.

5.6 Case Study
To illustrate the scheduling process of hyperparameters with train-
ing, we perform a case study to investigate the scheduling of Au-
toOpt. Figure 9 presents the learning rate and coefficient of deep
component for various backbone models. As can be observed, al-
though the learning rates in backbones are different, they all decay
to a relatively lower value compared to the initial period, which
is consistent with the statement in previous work [27]. The ratio-
nale behind this is that when the model tends to converge, a small
learning rate is more helpful to get further improvement. AutoOpt
schedules the 𝐿2 coefficient without a notable pattern, which fur-
ther demonstrates that it is difficult to set the scheduling of the
regularization coefficient in advance either by a predefined rule or
by grid search. This observation further verifies the necessity of
our method.

10 20 30 40 50
epoch

0.0002

0.0000

0.0002

0.0004

0.0006

lr

IPNN
DeepFM
DCN
xDeepFM

10 20 30 40 50
epoch

0.000

0.002

0.004

0.006

0.008

0.010

de
ep

IPNN
DeepFM
DCN
xDeepFM

Figure 9: Learning rate and 𝐿2 coefficient of deep component
scheduled by AutoOpt on Avazu dataset.

191

RecSys ’23, September 18–22, 2023, Singapore, Singapore Yujun, Xing and Bo, et al.

Retrieval

Ranker

Indexer

Candidate Pool

User Behavior Logs

Trainer

Request Items

Candidate Items

Features

Item List

User Behavior

Processed Data

Processed Data

Model

Online Inference

Offline Training
Interact

Global Search
(ADs Recommendation)

Recommender System Overview

AD

Private FM
(Music Recommendation)

Figure 10: The scenarios of Global Search and Private FM, and overview of a mainstream Recommender System.

6 ONLINE EXPERIMENT
6.1 Scenario Description & System Overview
We deploy the AutoOpt in a mainstream network information ser-
vice platform to enable adaptive hyperparameters adjustment for
deep CTR models, serving tens of millions of daily active users.
The A/B testing is conducted in two scenarios: 1) An advertising
display scenario named “Global Search”; 2) A personalized song rec-
ommendation scenario named “Private FM”. The display scenarios
are shown in the left subgraph of Figure 10.

We briefly describe the industrial recommender system, which
is depicted in the right subgraph of Figure 10. The system overview
consists of two core modules: Online Inference stage and Offline
Training stage. When a user arrives, a request with the user’s at-
tributes and contextual features is sent to the online service. Then
the online Retrieval module is triggered and retrieves candidate
items (ads or music) from the candidate pool. An Indexer extracts
features of the user, candidate items, and the context, and then con-
structs instances for online serving. Afterward, a Ranker leverages
these instances and the model that is trained periodically by an of-
fline Trainer module to compute pCTR scores. Finally, an item list is
presented to the user, which is sorted by a pre-defined ranking func-
tion. As for the offline training stage, the Trainer module utilizes
the newly generated user behavior logs to train deep CTR models,
which will be pushed for online serving periodically. Our proposed
AutoOpt is deployed in the offline Trainer module and provides
automatic hyperparameter adjustment capability for various deep
CTR models. It is obvious that AutoOpt is easy to deploy and has a
wide range of compatibility. More importantly, the online training
procedure is imperceptible, avoiding online service modification.

6.2 Experimental Setting
The online A/B test is conducted for three weeks on both the ads
and music recommendation scenarios, where tens of millions of
daily active users are served and generate plenty of user log events.
The compared baseline model online is denoted asM𝐵𝑎𝑠𝑒 , which
is a carefully-tuned deep CTR model. Based on the same model
architecture as M𝐵𝑎𝑠𝑒 , we deploy the AutoOpt to automatically
search optimal learning rate, component-level 𝐿1 and 𝐿2 coefficients,
dropout ratio, named as M𝐴𝑢𝑡𝑜𝑂𝑝𝑡 . Both M𝐵𝑎𝑠𝑒 and M𝐴𝑢𝑡𝑜𝑂𝑝𝑡

are trained over the same latest user behavior logs. For online

ads (or music) serving, 10% (or 25%) of the users are randomly
selected as the experimental group and served by the AutoOpt
model M𝐴𝑢𝑡𝑜𝑂𝑝𝑡 , while another 10% (or 25%) of the users are in
the control group and served by the baseline modelM𝐵𝑎𝑠𝑒 .

6.3 Online Results
For online advertising recommendation, two commonly-used ad-
vertising evaluation metrics, i.e., click-through rate (CTR) (total
number of clicks divided by the total number of impressions) and
effective cost per mile (eCPM) (total revenue divided by the
total number of thousand ad impressions), are used to evaluate
the performance of different deployed models. Besides, for music
recommendation, we introduce two widely-used music evaluation
metrics, i.e., per capita playback times (PCPT) (total playback
times divided by the number of users) and per capita playback
duration (PCPD) (total playback duration divided by the number
of users). The online A/B testing results are shown in Table 4. Com-
pared with the control group,M𝐴𝑢𝑡𝑜𝑂𝑝𝑡 upgrades the average CTR
and eCPM by 3.6% and 1.4% for ads recommendation; upgrades
PCPT and PCPD by 5.3% and 4.9% for music recommendation,
which demonstrates the effectiveness of the AutoOpt method. Be-
sides, the training time of M𝐴𝑢𝑡𝑜𝑂𝑝𝑡 is increased by only 18%,
which is acceptable in the industry. Additionally, the inference time
that is more concerned with the CTR prediction does not increase.
Moreover, with AutoOpt integrated, the tedious hyperparameter
adjustment process can be omitted, thereby saving significant labor
costs and bringing significant business improvement.

Table 4: Online improvement of M𝐴𝑢𝑡𝑜𝑂𝑝𝑡 compared with
baselineM𝐵𝑎𝑠𝑒 . The improvement is calculated by A/B - A/A.

Global Search (ads) CTR eCPM
+3.6% +1.4%

Private FM (music) PCPT PCPD
+5.3% +4.9%

7 CONCLUSION
We propose AutoOpt to automatically schedule and optimize hyper-
parameters for deep CTR models, making the optimization process

192

AutoOpt RecSys ’23, September 18–22, 2023, Singapore, Singapore

more stable and efficient. We formulate the training process as
several consecutive stages where each stage consists of three main
phases, where stage-wise hyperparameters are proposed. Moreover,
to improve the stability and efficiency of hyperparameter explo-
ration, a multi-worker parallel training system is also proposed.
Extensive experiments on both offline benchmark CTR datasets
and online tests demonstrate that AutoOpt can improve the perfor-
mance and reduce the search cost of several mainstream deep CTR
models.

ACKNOWLEDGMENTS
We thank MindSpore [1] for the partial support of this work, which
is a new deep learning computing framework.

REFERENCES
[1] 2020. MindSpore. https://www.mindspore.cn/
[2] Weijie Bian, Kailun Wu, Lejian Ren, Qi Pi, Yujing Zhang, Can Xiao, Xiang-Rong

Sheng, Yong-Nan Zhu, Zhangming Chan, Na Mou, Xinchen Luo, Shiming Xiang,
Guorui Zhou, Xiaoqiang Zhu, and Hongbo Deng. 2022. CAN: Feature Co-Action
Network for Click-Through Rate Prediction. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining (Virtual Event, AZ, USA)
(WSDM ’22). Association for Computing Machinery, New York, NY, USA, 57–65.
https://doi.org/10.1145/3488560.3498435

[3] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2015. Simple and Scalable
Response Prediction for Display Advertising. ACM Trans. Intell. Syst. Technol. 5,
4 (dec 2015), 61.

[4] Karansingh Chauhan, Shreena Jani, Dhrumin Thakkar, Riddham Dave, Jitendra
Bhatia, Sudeep Tanwar, and M. Obaidat. 2020. Automated Machine Learning:
The New Wave of Machine Learning. In International Conference on Innovative
Mechanisms for Industry Applications. 205–212.

[5] Hung-Hsuan Chen and Pu Chen. 2019. Differentiating Regularization Weights–A
Simple Mechanism to Alleviate Cold Start in Recommender Systems. ACM Trans.
Knowl. Discov. Data 13, 1, Article 8 (Jan. 2019).

[6] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[7] Yihong Chen, B. Chen, Xiangnan He, Chen Gao, Y. Li, Jian-Guang Lou, and Yue
Wang. 2019. _Opt: Learn to Regularize Recommender Models in Finer Levels.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, 978–986.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. 7–10.

[9] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient
Hyperparameter Optimization at Scale. In Proceedings of the 35th International
Conference on Machine Learning, Vol. 80. 1437–1446.

[10] Bruno G. Galuzzi, Ilaria Giordani, Antonio Candelieri, Riccardo Perego, and
Francesco Archetti. 2020. Hyperparameter optimization for recommender sys-
tems through Bayesian optimization. Comput. Manag. Sci. 17, 4 (2020), 495–515.
https://doi.org/10.1007/s10287-020-00376-3

[11] Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero Candela, and Rod-
erick Murray-Smith. 2002. Gaussian Process Priors with Uncertain Inputs-
Application to Multiple-Step Ahead Time Series Forecasting. In NeurIPS.

[12] Huifeng Guo, Bo Chen, Ruiming Tang, Weinan Zhang, Zhenguo Li, and Xiuqiang
He. 2021. An Embedding Learning Framework for Numerical Features in CTR
Prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining (Virtual Event, Singapore) (KDD ’21). Association for
Computing Machinery, New York, NY, USA, 2910–2918. https://doi.org/10.1145/
3447548.3467077

[13] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
IJCAI.

[14] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, and Joaquin Quiñonero Candela. 2014.
Practical Lessons from Predicting Clicks on Ads at Facebook. In Proceedings of
the Eighth International Workshop on Data Mining for Online Advertising. 1–9.

[15] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and
Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012).

[16] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. 2008. A Practical Guide to
Support Vector Classication.

[17] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki,
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Si-
monyan, et al. 2017. Population based training of neural networks. arXiv preprint
arXiv:1711.09846 (2017).

[18] Yuchen Jin, Tianyi Zhou, Liangyu Zhao, Yibo Zhu, Chuanxiong Guo, Marco
Canini, and Arvind Krishnamurthy. 2021. Autolrs: Automatic learning-rate
schedule by bayesian optimization on the fly. arXiv preprint arXiv:2105.10762
(2021).

[19] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaoming Wang, Jay K Adams,
Pranav Khaitan, Jiahui Liu, and Quoc V Le. 2020. Neural input search for large
scale recommendation models. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2387–2397.

[20] Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. 2016. Field-
Aware Factorization Machines for CTR Prediction. In Proceedings of the 10th ACM
Conference on Recommender Systems. 43–50.

[21] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[22] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[23] Lang Lang, Zhenlong Zhu, Xuanye Liu, Jianxin Zhao, Jixing Xu, and Minghui
Shan. 2021. Architecture and Operation Adaptive Network for Online Recom-
mendations. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 3139–3149.

[24] Aitor Lewkowycz and Guy Gur-Ari. 2020. On the training dynamics of deep
networks with 𝐿2 regularization. In Advances in Neural Information Processing
Systems, Vol. 33. 4790–4799.

[25] Jianxun Lian, Xiaohua Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guang zhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 1754–1763.

[26] Bin Liu, Niannan Xue, Huifeng Guo, Ruiming Tang, Stefanos Zafeiriou, Xiuqiang
He, and Zhenguo Li. 2020. AutoGroup: Automatic Feature Grouping forModelling
Explicit High-Order Feature Interactions in CTR Prediction. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (Virtual Event, China) (SIGIR ’20). Association for Computing Ma-
chinery, New York, NY, USA, 199–208. https://doi.org/10.1145/3397271.3401082

[27] Ilya Loshchilov and Frank Hutter. 2016. SGDR:Stochastic Gradient Descent with
Restarts. In ICLR.

[28] Fuyuan Lyu, Xing Tang, Huifeng Guo, Ruiming Tang, Xiuqiang He, Rui Zhang,
and Xue Liu. 2022. Memorize, Factorize, or be Naive: Learning Optimal Feature
InteractionMethods for CTR Prediction. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE). 1450–1462. https://doi.org/10.1109/ICDE53745.2022.
00113

[29] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming
Tang, and Xue Liu. 2022. OptEmbed: Learning Optimal Embedding Table for
Click-through Rate Prediction. https://doi.org/10.48550/ARXIV.2208.04482

[30] Hao Peng, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, and Zhi Jin. 2015. A
Comparative Study on Regularization Strategies for Embedding-based Neural
Networks. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing. 2106–2111.

[31] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng
Guo, Yong Yu, and Xiuqiang He. 2018. Product-Based Neural Networks for User
Response Prediction over Multi-Field Categorical Data. ACM Trans. Inf. Syst. 37,
1, Article 5 (2018).

[32] C. Rasmussen and Christopher K. I.Williams. 2006. Gaussian Processes for Machine
Learning. The MIT Press.

[33] Steffen Rendle. 2010. Factorization Machines. In 2010 IEEE International Confer-
ence on Data Mining. 995–1000.

[34] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
Clicks: Estimating the Click-through Rate for New Ads. In Proceedings of the 16th
International Conference on World Wide Web (Banff, Alberta, Canada) (WWW
’07). Association for Computing Machinery, New York, NY, USA, 521–530.

[35] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.
2002. Methods and Metrics for Cold-Start Recommendations. In Proceedings of
the 25th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval. 253–260.

[36] Jasper Snoek, H. Larochelle, and Ryan P. Adams. 2012. Practical Bayesian Opti-
mization of Machine Learning Algorithms. In NeurIPS.

[37] Qingquan Song, Dehua Cheng, Hanning Zhou, Jiyan Yang, Yuandong Tian, and
Xia Hu. 2020. Towards automated neural interaction discovery for click-through
rate prediction. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 945–955.

[38] Jianhui Sun, Ying Yang, Guangxu Xun, and Aidong Zhang. 2021. A Stagewise
Hyperparameter Scheduler to Improve Generalization. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining (Virtual Event,
Singapore) (KDD ’21). Association for Computing Machinery, New York, NY,

193

https://www.mindspore.cn/
https://doi.org/10.1145/3488560.3498435
https://doi.org/10.1007/s10287-020-00376-3
https://doi.org/10.1145/3447548.3467077
https://doi.org/10.1145/3447548.3467077
https://doi.org/10.1145/3397271.3401082
https://doi.org/10.1109/ICDE53745.2022.00113
https://doi.org/10.1109/ICDE53745.2022.00113
https://doi.org/10.48550/ARXIV.2208.04482

RecSys ’23, September 18–22, 2023, Singapore, Singapore Yujun, Xing and Bo, et al.

USA, 1530–1540. https://doi.org/10.1145/3447548.3467287
[39] Yang Sun, Junwei Pan, Alex Zhang, and Aaron Flores. 2021. FM2: Field-Matrixed

Factorization Machines for Recommender Systems. In Proceedings of the Web
Conference 2021. 2828–2837.

[40] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. In Proceedings of the ADKDD’17. 12:1–12:7.

[41] Kaichao You, Mingsheng Long, Jianmin Wang, and Michael I Jordan. 2019.
How does learning rate decay help modern neural networks? arXiv preprint
arXiv:1908.01878 (2019).

[42] Yun Yue, Yongchao Liu, Suo Tong, Minghao Li, Zhen Zhang, Chunyang Wen,
Huanjun Bao, Lihong Gu, Jinjie Gu, and Yixiang Mu. 2021. Adaptive Optimizers
with Sparse Group Lasso for Neural Networks in CTR Prediction. In Machine
Learning and Knowledge Discovery in Databases. Research Track (ECML-PKDD
2021). Springer International Publishing, Cham, 314–329.

[43] Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep Learning over Multi-
field Categorical Data. In European Conference on Information Retrieval. 45–57.

[44] Weinan Zhang, Jiarui Qin, Wei Guo, Ruiming Tang, and Xiuqiang He. 2021.
Deep Learning for Click-Through Rate Estimation. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence. 4695–4703.

[45] Pengyu Zhao, Kecheng Xiao, Yuanxing Zhang, Kaigui Bian, and Wei Yan. 2021.
AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investi-
gation in the Recommender System.. In IJCAI. 2104–2110.

[46] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2021. AutoDim: Field-aware Embedding Dimen-
sion Searchin Recommender Systems. In WWW ’21: The Web Conference 2021.
ACM / IW3C2, Slovenia, 3015–3022.

[47] Chenxu Zhu, Bo Chen, Weinan Zhang, Jincai Lai, Ruiming Tang, Xiuqiang He,
Zhenguo Li, and Yong Yu. 2021. AIM: Automatic Interaction Machine for Click-
Through Rate Prediction. IEEE Transactions on Knowledge and Data Engineering
(2021).

194

https://doi.org/10.1145/3447548.3467287

	Abstract
	1 Introduction
	2 Related Work
	2.1 Deep CTR Prediction
	2.2 Hyperparameter Optimization

	3 Preliminary
	4 The Proposed Methodology
	4.1 Problem Formulation
	4.2 AutoOpt

	5 Experiments
	5.1 Experiment Setup
	5.2 Overall Performance
	5.3 Effectiveness and Efficiency
	5.4 Ablation Study
	5.5 Hyper-Parameters Sensitivity
	5.6 Case Study

	6 Online Experiment
	6.1 Scenario Description & System Overview
	6.2 Experimental Setting
	6.3 Online Results

	7 Conclusion
	Acknowledgments
	References

