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To alleviate the problem of information explosion, recommender systems are widely deployed to provide per-

sonalized information filtering services. Usually, embedding tables are employed in recommender systems

to transform high-dimensional sparse one-hot vectors into dense real-valued embeddings. However, the em-

bedding tables are huge and account for most of the parameters in industrial-scale recommender systems.

In order to reduce memory costs and improve efficiency, various approaches are proposed to compress the

embedding tables. In this survey, we provide a comprehensive review of embedding compression approaches

in recommender systems. We first introduce deep learning recommendation models and the basic concept

of embedding compression in recommender systems. Subsequently, we systematically organize existing ap-

proaches into three categories: low precision, mixed dimension, and weight sharing. Lastly, we summarize

the survey with some general suggestions and provide future prospects for this field.
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1 INTRODUCTION

To alleviate the problem of information explosion, recommender systems [55, 61] are extensively

deployed to provide personalized information filtering services, including online shopping [80],

advertising systems [46], and so on. Meanwhile, deep learning techniques have shown impressive

capabilities in capturing user preferences for candidate items. Thereupon, both the industry and

research communities have proposed a variety of deep learning recommendation models (DL-

RMs) to enhance the performance of recommender systems, such as Wide & Deep [6] in Google

Play, DIN [80] in Alibaba, and DeepFM [18] in Huawei.

1.1 Deep Learning Recommendation Models

Recommender systems are utilized for a diverse range of tasks, such as candidate item

matching [30], click-through rate (CTR) prediction [51, 52], and conversion rate (CVR)

prediction [44]. For each of these tasks, the employed DLRMs have undergone meticulous design

processes to ensure optimal performance. However, without loss of generality, most DLRMs follow

the embedding table and neural network paradigm [18, 45, 57, 58] despite the fact that the specific

design of the neural network component may vary across different model architectures.

As illustrated in Figure 1, the embedding table is responsible for converting input rows into

dense embedding vectors. It is worth noting that the input rows of DLRMs typically consist of

categorical features, which are encoded as high-dimensional one-hot vectors. Each category fea-

ture will be referred to simply as feature and all features under the same category form a feature

field. Generally, each feature is associated with a unique embedding stored in the embedding table

E ∈ Rn×d , where n denotes the total number of features and d denotes the embedding dimension.

On the other hand, the neural network is primarily engaged in interacting, processing, and an-

alyzing feature embeddings, along with making predictions. Recent studies [18, 29, 36, 40, 65, 70]

have consistently focused on optimizing the feature extraction capabilities of the neural networks.

For example, [18, 58] utilize product operators to model the feature interactions between different

feature fields. The authors of [36, 40] employ convolutions on embeddings to capture feature inter-

actions of arbitrary order. The authors of [65] introduce an additional attention network to assign

varying importance to different feature interactions. Additionally, [29, 70] automatically search

for suitable interaction functions using AutoML techniques [21]. In this article, we do not delve

into the detailed design of the neural network component. Instead, we recommend referring to the

works [61, 74, 75] for a comprehensive understanding of the neural networks used in DLRMs.

Despite incorporating various intricate designs, the neural network usually entails relatively

shallow layers and a limited number of model parameters. In contrast, the embedding table occu-

pies the vast majority of model parameters. Especially in industrial-scale recommender systems,

in which there are billions or even trillions of categorical features, the embedding table may take

hundreds of GB or even TB to hold [17]. For example, the size of embedding tables in Baidu’s ad-

vertising systems reaches 10 TB [66]. As the scale of recommender systems perpetually expands,

the continuous growth in the number of features will bring greater storage overhead.

1.2 Embedding Compression in Recommender Systems

In addition to increasing storage overhead, larger embedding tables will also result in higher la-

tency during table lookup,1 which will reduce the efficiency of model training and inference. There-

fore, to deploy the DLRMs with large embedding tables in real production environments efficiently

and economically, it is necessary to compress their embedding tables.

1The process of retrieving an embedding from the embedding table based on the input feature or index.
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Fig. 1. The embedding table and neural network paradigm of deep learning recommendation models (DLRMs).

Note that the neural network component may vary in different model architectures. Here, we only present

the neural network with the classic dual tower architecture as an example.

However, embedding compression in DLRMs differs significantly from model compression in

other fields, such as Computer Vision (CV) [8] and Natural Language Processing (NLP) [19].

These differences primarily manifest in three aspects: model architectures, properties of input data,

and model size. First, vision models and language models are usually very deep neural networks

stacked by fully connected layers, convolutional layers, or transformers. Consequently, compres-

sion methods designed for these models focus on compressing the aforementioned modules rather

than embedding tables. In contrast, DLRMs are typically shallow models, with the majority of

parameters concentrated in the embedding tables. Second, the input data of vision models and lan-

guage models are usually images and texts, inherently containing abundant visual and semantic

information that can be leveraged for model compression. For example, the authors of [4] use the

semantic information as a priori knowledge to compress the word embeddings, while the authors

of [20] exploit the similarity between feature maps derived from image inputs to compress con-

volution kernels. However, in recommender systems, there is generally limited visual or seman-

tic information available. Fortunately, DLRMs possess unique properties in the input data that

can facilitate embedding compression. Specifically, categorical features are organized in feature

fields and often follow a highly skewed long-tail distribution, with varying numbers of features

in different fields. We can compress embedding tables based on feature frequency and field size.

Third, embedding tables of DLRMs are usually hundreds or even thousands of times larger than

vision models or language models [53], which presents a more challenging and necessary task for

compression.

Recently, embedding compression has gained increasing attention in recommender systems,

leading to the development and application of various embedding compression techniques for DL-

RMs. However, there is currently no comprehensive survey summarizing the methods employed

for embedding compression. Therefore, the primary objective of this article is to review and sum-

marize representative research in this field. The embedding table can be regarded as a matrix with

three dimensions: the precision of weights, the dimension of embeddings, and the number of em-

beddings. To this end, we summary the embedding compression methods into three categories

according to the dimensions they compress, as illustrated in Figure 2. First, low-precision meth-

ods reduce the memory of each weight by decreasing its bit width. According to the size of bit

width and its corresponding advantages, we further divide the low-precision methods into bina-

rization and quantization. Second, mixed-dimension methods reduce the memory of specific

embeddings by decreasing their dimensions and using mixed-dimension embeddings. According
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Fig. 2. Summary of representative studies on embedding compression in recommender systems.

to the techniques of determining the embedding dimension for different features, we categorize

the mixed-dimension methods into rule-based approaches, NAS-based approaches, and pruning.

Third, weight-sharing methods reduce the actual parameters of the embedding table by shar-

ing weights among different embeddings. Considering that the number of features is given by

the dataset, a solution to reduce the number of embeddings is to reuse embeddings among fea-

tures. Furthermore, we generalize the sharing to the weight level and define the weight-sharing

methods as generating embeddings with shared weights. According to the way that embeddings

are generated, we categorize the mixed-dimension methods into hashing, vector quantization, and

decomposition. We will introduce the three primary categories in Sections 2, 3, and 4, respectively.

Note that embeddings are fed into the neural network as representations of categorical features

and form the foundations of DLRMs. Therefore, when compressing embeddings, it may affect many

aspects of model performance, including model accuracy, inference efficiency, training efficiency,

and training memory usage. We will discuss the pros and cons of different methods regarding

these metrics at the end of each section. In Section 5, the survey is summarized, providing general

suggestions for different scenarios and discussing future prospects for this field.

2 LOW PRECISION

As we all know, embedding weights are typically stored in the format of FP32,2 which occupies

32 bits. To reduce the storage of each weight, low-precision approaches are developed to repre-

sent a weight with fewer bits. In particular, according to the bit width of weights, low-precision

approaches can be further divided into binarization and quantization.

2.1 Binarization

Binarization is to compress a full-precision weight into a binary code that only occupies 1 bit. It is

widely used in the embedding-based similarity search of recommender systems [28, 54] since the

2Short for single-precision floating-point format.
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Fig. 3. End-to-end optimization paradigms of learning binary embeddings. B (yellow) and E (green) represent

the binary and full-precision weights, respectively. Loss (red) is the training loss, where Ψ(·) is the objective

function and MSE(·) is the mean square error function.

binary embeddings have two distinct advantages compared with the full-precision ones: (1) less

memory or disk cost for storing embeddings; and (2) higher inference efficiency as the similarity

(i.e., inner product) between binary embeddings can be calculated more efficiently through the

Hamming distance, which has been proved in [73].

The work of [42, 77] pioneered obtaining binary embeddings in a two-stage (i.e, post-training)

manner. Specifically, they first learn a full-precision embedding table while ignoring the binary

constraints and then perform binarization (e.g., siдn(x )) on the full-precision embeddings to get

binary embeddings. However, the binarization procedure is not in the training process and, thus,

cannot be optimized by minimizing the training objective, which will bring large irreparable errors

and fail to meet an acceptable accuracy. To reduce accuracy degradation, subsequent works have

focused on end-to-end approaches to learn the binary embeddings during training.

As shown in Figure 3, recent works typically learn binary embeddings following two optimiza-

tion paradigms: direct optimization and indirect optimization. As Figure 3(a) shows, in the direct

optimization of binarization, the binary embeddings are maintained as part of the model parame-

ters and will be optimized directly by the training loss. For example, to improve the efficiency of

Collaborative Filtering (CF), DCF [73] learns a binary embedding table B ∈ {±1}n×d . To maxi-

mize the information encoded in each binary embedding, DCF further adds a balance-uncorrelation

constraint to B (i.e., B
T

1 = 0,BT
B = nI), where I is an identity matrix. However, it is NP-hard to

optimize the binary embeddings with such constraint. To resolve this problem, DCF also maintains

a full-precision embedding table E ∈ Rn×d with the same balance-uncorrelation constraint. The

constraint of B is then replaced by adding the mean square error (MSE) of (B−E) to the objective

function. During training, DCF will update B and E alternatively through different optimization

algorithms. Specifically, B is updated by Discrete Coordinate Descent (DCD) and E is updated

with the aid of Singular Value Decomposition (SVD). This optimization paradigm has been

widely used to learn binary embeddings in recommender systems such as DPR [76], DCMF [33],

and DFM [37]. DPR changes the objective function of DCF (i.e., rating prediction) to personalized

items ranking. DCMF and DFM extend this binarization paradigm to Content-aware Collaborative

Filtering [32] and Factorization Machine (FM) [49], respectively.

As shown in Figure 3(b), another paradigm is indirect optimization, in which the binary em-

beddings B are generated from full-precision embeddings E on the fly and will be optimized in-

directly by optimizing E. However, it is infeasible to optimize E by the standard gradient descent

as the gradients of the binary operations (e.g., siдn(x )) are constantly zero. To solve this prob-

lem, CIGAR [28] replaces siдn(x ) with the scaled tanh function tanh(αx ) as limα→∞ tanh(αx ) =
siдn(x ) and tanh(αx ) has a better differential property. In the early stages of training, a smaller

value of α is utilized to yield superior representations and, as the training progresses, its value
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gradually increases to approximate siдn(). Another way to solve the non-propagable gradient is

with a straight-through-estimator (STE) [9], which treats some operations as identity maps

during backpropagation. HashGNN [54] employs the STE variant of siдn(), thus updating E with

the gradients of B. However, the huge gap between B and E will cause an imprecise update

for E. To solve this issue, HashGNN further develops a dropout-based binarization. Specifically,

Ê = (1 − P) � E + P � B will be fed into the following networks, where P ∈ {0, 1}n×d and � is the

element-wise product. Each element in P is a Bernoulli random value with probability p. During

backpropagation, only the embeddings that are binarized will be updated through STE; the rest

will be updated by standard gradient descent. To ensure convergence, HashGNN adopts a small

value for p in the initial training phase, gradually increasing it as the training progresses. Simi-

larly, L2Q-GCN [5] uses the STE to optimize the full-precision embeddings while introducing a

positive scaling factor s = mean( |e |) for each binary embedding to enhance its presentation ca-

pability, where e is the full-precision embedding. The comparison of the above three methods is

summarized in Algorithm 1.

ALGORITHM 1: Comparison between CIGAR [28], HashGNN [54], and L2Q-GCN [5].

Input: a full-precision embedding e .

Output: the output embedding ê . // ê will be fed into following networks.

Func CIGAR(e):

ê = tanh(α · e ) // α will increase as training progresses.

Func HashGNN(e):

b = siдn_ste (e ) // siдn_ste () is the STE variant of siдn().

p := {0, 1}d // sample from Bernoulli distribution with probability p.

ê = (1 − p) � e + p � b // p will increase as training progresses.

Func L2Q-GCN(e):
b = siдn_ste (e )
ê =mean( |e |) · b

2.2 Quantization

Although binarization has better efficiency and less memory cost at the inference stage, it may lead

to a significant drop of accuracy, which is not acceptable in several scenarios. As Cheng et al. [6]

claim, even a 0.1% decrease of the prediction accuracy may result in a large decline in revenue.

To trade off the memory cost and the prediction accuracy, quantization is used to represent each

weight with a multi-bit integer.

Quantization is the mapping of a 32-bit full-precision weight to an element in the set of quan-

tized values S = {q0,q1, . . . ,qk }, where k = 2s − 1 and s is the bit width. The most commonly

used quantization function is uniform quantization, where the quantized values are uniformly dis-

tributed. Specifically, the step size Δ = qi − qi−1 remains the same for any i ∈ [1,k]. Let w be a

value clipped into the range [q0,qk ]; we can quantize it into an integer as ŵ = rd ((w − q0)/�),
where rd (x ) rounds x to an adjacent integer. The integer ŵ will be de-quantized into a floating-

point value (ŵ × � + q0) when used. Existing work on embedding quantization either performs

post-training quantization or trains a quantized embedding table from scratch.

Guan et al. [16] study post-training quantization (PTQ) on the embedding tables and propose

a uniform and a non-uniform quantization algorithm. Specifically, in the uniform quantization,

they maintain a quantization range for each embedding and find the best quantization range by

a greedy search algorithm. In the non-uniform quantization, they divide similar embeddings into

groups and apply k-means clustering on the weights to produce a codebook for each group. The

ACM Computing Surveys, Vol. 56, No. 5, Article 130. Publication date: January 2024.
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Fig. 4. Training frameworks of quantization. Loss (red) is the training loss.M (purple) and E (green) represent

the integer and full-precision weights, respectively.

weights in each group will be mapped to the index of a value in the corresponding codebook. These

two algorithms improve the accuracy of PTQ; however, they still suffer from accuracy degradation.

To further reduce accuracy degradation, recent works [66, 69] learn quantized weights from

scratch. Unlike the well-known quantization-aware training (QAT) [2, 13], [66, 69] use another

quantization training framework to exploit the sparsity of the input data, which we term low-

precision training (LPT). As Figure 4(a) shows, QAT quantizes the full-precision weights in the

forward pass and updates the full-precision weights with the gradients estimated by the STE. As

Figure 4(b) shows, in LPT, the weights are stored in the format of integers at training, thereby

compressing the training memory. The model takes the de-quantized weights as input and will

quantize the weights back into integers after backpropagation. Since the input one-hot vectors of

DLRMs are highly sparse, only an extremely small part of the embeddings will be de-quantized into

floating-point values, whose memory is negligible. Xu et al. [66] use 16-bit LPT on the embedding

table without sacrificing accuracy. To enhance the compression capability of LPT, Yang et al. [69]

propose a mixed-precision scheme in which most embeddings are stored in the format of integers

and only the most recently or frequently used embeddings are stored in a full-precision cache.

With a small cache, they achieve lossless compression with 8-bit or even 4-bit quantization. Li

et al. [31] propose an adaptive low-precision training scheme to learn the quantization step size

for better model accuracy.

2.3 Discussion

Low precision is a simple yet effective way for embedding compression. At the inference stage,

binarization can reduce the memory usage by 32× and accelerate the inference through Hamming

distance. However, the binary embeddings usually cause severe accuracy degradation and need to

be trained with the guidance of full-precision embeddings, which requires more memory usage

and computing resources at training. In contrast, quantization has a limited compression capabil-

ity but can achieve a comparable accuracy to the full-precision embeddings. Recent quantization

approaches for embedding tables can also compress the memory usage at the training stage and

improve the training efficiency by reducing the communication traffic.

3 MIXED DIMENSION

Embedding tables usually assign a uniform dimension to all the embeddings in a heuristic way,

which turns out to be suboptimal in both prediction accuracy and memory usage [25]. As con-

firmed in [78], a low-dimensional embedding is good at handling less frequent features where a

high-dimensional embedding cannot be well trained. Therefore, to boost the model performance,

it is important to assign an appropriate dimension to each feature and use mixed-dimension

embeddings.

ACM Computing Surveys, Vol. 56, No. 5, Article 130. Publication date: January 2024.
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Fig. 5. Structures of mixed-dimension embeddings.

Existing methods can obtain mixed-dimension embeddings in a structured or an unstructured

manner. As shown in Figure 5, structured approaches divide the embeddings into groups, each of

which has a unique dimension, whereas unstructured approaches learn a sparse embedding table

where the embeddings have various dimensions. However, these mixed-dimension embeddings

are not compatible with the operations (e.g., inner product), which require embeddings of the

same length. Therefore, the mixed-dimension embeddings need to be transformed into a uniform

dimension before feeding into the following networks. Such transformation is usually achieved by

linear projection or simply zero padding. Apart from the difference in the embedding structures,

existing methods also differ greatly in generating mixed-dimension embeddings. In this section, we

will introduce three kinds of mixed-dimension approaches: rule-based approaches, NAS-based

approaches, and pruning.

3.1 Rule-Based Approaches

It is a common understanding that the features with higher frequencies are more informative and

the fields with more features occupy more memory. Thus, the embedding dimension can be set

with a heuristic rule based on the feature frequency and field size. To deploy the item embeddings

into resource-constraint devices, CpRec [53] divides the items into several groups by frequency

and assigns a predefined dimension to each group according to the frequencies of owned features.

Similarly, MDE [15] assigns each feature field with a unique dimension according to the number of

features included in this field. Specifically, letn ∈ Rm denote the number of features in allm feature

fields and p = 1/n; then, the embedding dimension of the i-th field would be d̄pi
α /| |p | |α∞, where

d̄ is the base dimension and α ∈ [0, 1] denotes the temperature. These rule-based approaches

are simple yet effective in reducing the memory usage and alleviating the overfitting problems.

However, they suffer from suboptimal performance as the heuristic rules cannot be optimized by

the ultimate goal of minimizing the training objective.

3.2 NAS-Based Approaches

NAS was originally proposed to search for the optimal neural network architectures [82]. Recently,

it has also been adopted in searching embedding dimensions for different features. Unlike the rule-

based approaches in which the dimension is set based on a priori, it is now learned. Generally,

there are three components in the NAS-based approaches: (1) search space — relaxing the large

optimization space of embedding dimensions with heuristic assumptions; (2) controller —usually

a neural network or learnable parameters, selecting candidate dimension from the search space

in a hard or soft manner; and (3) updating algorithm —updating the controller with reinforce-

ment learning (RL) algorithms or differential architecture search (DARTS) [38] techniques

and so on.

ACM Computing Surveys, Vol. 56, No. 5, Article 130. Publication date: January 2024.
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We first introduce the approaches of NIS [25], ESAPN [39], and AutoIAS [59], which adopt

a policy network as the controller and update the controller with RL algorithms. NIS [25] and

ESAPN [39] are designed to learn embedding dimensions of users and items. In NIS, the authors

relax the original search spacen×d toG×B (G < n andB < d) by dividing the features intoG groups

and cutting the embedding dimension of each group into B blocks. Then, they use the controller to

select several blocks and generate the final embeddings. In ESAPN, the authors predefine the search

space as a set of candidate embedding dimensions D = {d1,d2, . . . ,dk }, where d1 < d2 < . . . < dk .

Inspired by the fact that the frequencies of features are monotonically increasing in the data stream,

they decide to increase or keep the current embedding dimension instead of selecting one in D.

The decision is made by the controller based on the feature frequency and the current embedding

dimension. In contrast to NIS and ESAPN, AutoIAS searches not only the embedding dimensions

of feature fields but also the following neural network architectures. The authors design a search

space for each model component (e.g., the search space of embedding dimensions is similar as

D in ESAPN). To boost the training efficiency, they maintain a supernet at training and use the

controller to generate sub-architectures by inheriting parameters from the supernet.

The RL-based approaches described above perform a hard selection by selecting only one embed-

ding dimension for each feature or field at a time. Instead, inspired by DARTS, AutoEmb [78] and

AutoDim [79] make a soft selection by weighted summing over the embeddings of the candidate

dimensions in D = {d1,d2, . . . ,dk }. Let ω ∈ [0, 1]k denote the vector composed of the weighting

coefficients. AutoEmb searches for the embedding dimensions of individual features, whereas Au-

toDim searches for the embedding dimensions of the feature fields. In AutoEmb, the controller is a

neural network and generatesω based on the feature frequency, whereas AutoDim directly assigns

each field with a learnable vector ω, and it further approximates the hard selection by performing

Gumbel-Softmax [22] on ω. At training, the controller in AutoEmb and the learnable vectors in

AutoDim are optimized through DARTS techniques. After training, the corresponding dimension

of the largest weight in ω is selected and the model will be retrained for better accuracy.

Considering that the training process of the controller is quite time-consuming, recent works [3,

43] search for the optimal embedding dimensions after training the models without using any con-

troller. They first sample some structures from the search space and then explore the entire search

space by using evolutionary search strategies on the sampled structures. Specifically, RULE [3]

cuts the embedding table into G × B blocks similar to NIS and adds a diversity regularization

to the blocks in the same group for maximizing expressiveness. After training, RULE selects the

most suitable embedding blocks under a memory budget (i.e., the maximum number of blocks).

OptEmbed [43] trains a supernet while removing non-informative embeddings. After training, it

then assigns each field with a binary mask m ∈ {0, 1}d to obtain mixed-dimension embeddings,

where d is the original dimension. The block selections in RULE and the masks in OptEmbed are

determined and evolved by the search strategies.

3.3 Pruning

Instead of shortening the length of embeddings, pruning can obtain a sparse embedding table and

thus get mixed-dimension embeddings. For instance, DeepLight [10] prunes the embedding table

in a certain proportion. During training, it prunes and retrains the embedding table alternatively

so that the mistakenly pruned weights can grow back. In addition, DeepLight will increase the

pruning proportion gradually as training proceeds.

Another way to prune the embeddings is to train the embeddings with learnable masks. Specif-

ically, an embedding e is pruned as ê = m � e for the forward pass, where m is the mask and �
is the element-wise product. DNIS [7] divides features into groups by frequency and assigns each

group with a learnable mask m ∈ [0, 1]d . AMTL [68] develops a network to generate a binary
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mask m ∈ {0, 1}d for each feature based on its frequency. Similarly, PEP [41] generates a binary

mask m ∈ {0, 1}d for each feature as m = I( |e | > д(s )), where I(·) is the indicator function and

д(s ) (e.g., siдmoid (s )) serves as a learnable threshold. In particular, in PEP, the embeddings should

minus д(s ) before being pruned by the masks (i.e. ê =m � (e −д(s ))). At training, the network in

AMTL and the learnable threshold in PEP are optimized together with the model parameters by

gradient descent, whereas the learnable masks in DNIS are optimized by DARTS. After training,

AMTL and PEP preserve ê as the final embeddings, whereas DNIS need pruning ê with a threshold

as the redundant weights in ê are not exact zero. The differences between the above methods in

generating masks are summarized in Algorithm 2.

ALGORITHM 2: Comparison between DNIS [7], AMTL [68], and PEP [41]

Input: the full-precision embedding e and feature frequency f .

Output: the pruned embedding ê . // ê will be fed into following networks.

Func DNIS(e):

m := [0, 1]d // m is a learnable mask.

ê =m � e // m is shared by features with similar frequency.

Func AMTL(e):

m := amtl ( f ) // m is generated by a network amtl () with the frequency f.
ê =m � e

Func PEP(e):

m = I( |e | > siдmoid (s )) // siдmoid (s ) serves as a learnable threshold.
ê =m � (e − siдmoid (s ))

To get rid of the extra training process of optimizing the masks, SSEDS [48] develops a single-

shot pruning algorithm to prune on the pretrained models. For a pretrained model, SSEDS will

prune the columns of the embedding matrix for each field and produce structured embeddings.

After training, SSEDS assigns each feature field with a mask and forms a mask matrix M = {1}n̂×d ,

where n̂ is the number of fields and d is the original embedding dimension. Instead of learning

M in the training process, SSEDS uses дi j = ∂ f (M,E)/∂Mi j to identify the importance of the

j-th dimension in the i-th field, where дi j is the gradient of the loss function with respect to Mi j .

Specifically, a larger magnitude of |дi j | means that the corresponding dimension has a greater

impact on the loss function. Note that all |дi j | can be computed efficiently via only one forward-

backward pass. Given a memory budget, SSEDS calculates a saliency score for each dimension as

si j = |дi j |/
∑n̂

i=0

∑d
j=0 |дi j | and prunes the dimensions with the lowest saliency scores.

3.4 Discussion

Mixed-dimension approaches can alleviate the overfitting problems and obtain better accuracy

but usually have worse efficiency at the training and inference stages. At inference, the structured

approaches usually suffer from extra computing cost due to the linear transformation and the

unstructured approaches store the sparse embedding table using sparse matrix storage, which will

cost extra effort to access. At training, NAS-based approaches require an extremely long time

for searching and pruning usually needs to retrain the pruned models for better accuracy, which

doubles the training time. In contrast, rule-based approaches have little influence on efficiency and

can save memory also at the training stage. However, they cannot achieve the optimal accuracy.

4 WEIGHT-SHARING

Low-precision approaches reduce the number of bits in a weight and mixed-dimension approaches

reduce the number of weights in an embedding. Unlike them, weight-sharing approaches share

weights among the embedding table, thereby reducing the actual number of parameters within it.
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Existing weight-sharing approaches usually generate embeddings with several shared vec-

tors. In this section, we relax the definition of weight-sharing and formulate a weight-sharing

paradigm based on existing approaches. Specifically, the embedding generation is formulated as

e =
⋃
/
∑s

i=1 I
i×T

i , where
⋃
/
∑

denotes concatenation or summation, T
i is a matrix composed of

shared vectors and I i is an index vector for selecting shared vectors in T
i . For ease of expression,

we refer to the shared vectors as meta-embeddings and the matrices of shared vectors as meta-

tables. According to the principle of constructing the index vectors, we introduce three kinds of

weight-sharing methods: hashing, vector quantization, and decomposition.

4.1 Hashing

Hashing methods generate the index vectors by processing the original feature id with hash

functions. For instance, the naïve hashing method [60] compresses the embedding table with

a simple hash function (e.g., the reminder function). Specifically, given the original size of the

embedding table n × d , each feature has an embedding e = I × T, where T ∈ Rm×d (m < n) and

I = one-hot(id%m) ∈ {0, 1}m . Note that I ×T is actually achieved by table look-up when I is a one-

hot vector. However, [60] naïvely maps multiple features to the same embedding. The collisions

between features will result in loss of information and drop of accuracy.

ALGORITHM 3: Comparison between QR [50], MEmCom [47], BCH [67], and FDH [72]

Input: the feature id (id ≤ n).
Output: the generated embedding ê . // ê will be fed into following networks.

Func QR(id):

I1 = one-hot(id%m), I2 = one-hot(id | m) // m is a predefined parameter.

ê = I1 × T
1 + I2 × T

2 // T
1 ∈ Rm×d and T

2 ∈ R(n |m)×d.

Func MEmCom(id):

I1 = one-hot(id%m), I2 = one-hot(id)
ê = (I1 × T

1) · (I2 × T
2) // T

1 ∈ Rm×d and T
2 ∈ Rn×1.

Func BCH(id):
divide the bits within id into s sub-ids {id1, . . . , ids }.
ê =
∑s

i=1 one-hot(idi ) × T // T is a shared meta-table.

Func FDH(id):

if feature id is frequent then

ê := Rd // frequent features have unique embeddings.

else
ê = QR(id)

To reduce the collisions, existing hashing methods use multiple hash functions to process the

feature id. They usually maintain multiple meta-tables (T1, . . . ,Ts ) and generate multiple index

vectors as I i = one-hot(hashi (id)), where i ∈ [1, s] and {hashi }si=1 is a group of hash functions.

For example, QR [50] maintains two meta-tables and uses the quotient function and the reminder

function to generate two index vectors. Similarly, MEmCom [47] also maintains two meta-tables

(T1 ∈ Rm×d , T
2 ∈ Rn×1) and generates two index vectors as I 1 = one-hot(id%m), I 2 = one-hot(id).

To better distinguish the features, MEmCom multiplies two meta-embeddings as the final embed-

ding. Further, Yan et al. [67] use Binary Code–Based Hash (BCH) functions to process the fea-

ture id at bit level. It divides the 64 bits of a feature id into s groups and restructures them into s
sub-ids (id1, . . . , ids ). Each sub-id corresponds to an index vector (i.e., I i = one-hot(idi ), i ∈ [1, s])
and obtains a meta-embedding. Additionally, to enhance the compression capability, BCH keeps

one single meta-table and shares it among all T
i , i ∈ [1, s]. Although the hashing methods
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described above are efficient in memory reduction, they still suffer from accuracy degradation

and extra computing cost of the hash functions. To alleviate these problems, Zhang et al. [72]

developed a Frequency-Based Double Hashing (FDH) method, which only uses hashing on

the features with low frequencies. In this way, fewer features need to be processed by the hash

function. With a little extra storage for the most frequent features, FDH not only improves the

prediction accuracy but also the inference efficiency. The difference between the above methods

in generating embeddings is reflected in Algorithm 3.

Instead of generating embeddings with meta-embeddings, LMA [12] and ROBE [11] use hash

functions to map each weight in the embedding table into a shared memory M . For a weight wi, j

in the embedding table, they take both i and j as the input of hash functions. LMA utilizes locality

sensitive hashing (LSH) to map the weights of each embedding to M randomly. ROBE organizes

M as a circular array and divides the flattened embedding table (i.e., concatenates all rows) into

blocks of size Z . The head of each block is mapped to M randomly and the following weights in

the block will be mapped to the position next to the head.

4.2 Vector Quantization

Hashing methods typically get the index vector by processing the feature id with hash func-

tions, which fail to capture the similarity between features themselves [26]. To capture the simi-

larity, vector quantization (VQ) constructs the index vectors through approximated nearest

neighbor search (ANNS). Specifically, for a feature with an original embedding of e , VQ gets its

index vector as I = one-hot(arg maxk sim(e,Tk )) ∈ {0, 1}m , where Tk is the k-th meta-embedding

in the meta-table T ∈ Rm×d and sim(·) is a similarity function (e.g., Euclidean distance). In other

words, VQ takes the original embedding as input and quantizes it into its most similar meta-

embedding. Note that the meta-table and the meta-embedding are commonly referred to as code-

book and codeword in recent literature on VQ. Here, we use meta-table and meta-embedding for

consistency.

Saec [62] generates a meta-table T by clustering the most frequent embeddings of a pretrained

model and then quantizes each original embedding into a meta-embedding in T. However, assign-

ing the same meta-embedding to different features (i.e., collisions) still results in a drop in accuracy,

even though the features have some similarity. In addition, Saec cannot optimize the meta-table

together with the original embeddings, which also results in suboptimal accuracy. To alleviate the

collisions, subsequent works adopt product quantization (PQ) [23] and additive quantization

(AQ) [1] to quantize an embedding into multiple meta-embeddings. To optimize the meta-table

together with the original embeddings, researchers usually quantize the original embeddings into

meta-embeddings during training and use the meta-embeddings as the input of the following net-

work, where the original embeddings will be optimized through an STE [9].

PQ considers an embedding as a concatenation of several segments (i.e., e =
⋃s

i=1 e
i ). Each seg-

ment ei corresponds to a meta-table T
i . At training, an embedding e is quantized as

⋃s
i=1 I

i × T
i ,

where I i = one-hot(arg maxk sim(ei ,Ti
k

)). In other words, PQ quantizes each segment into its

most similar meta-embedding in the corresponding meta-table. After training, the original em-

beddings are discarded and only the meta-tables are preserved. Since the selection of a meta-

embedding in a meta-table can be compactly encoded by logN bits, where N is the size of the

meta-table, an embedding can now be stored by s logN bits with the help of the meta-tables.

Further, MGQE [26] takes the feature frequency into consideration when using PQ. Specifi-

cally, it divides the embeddings of items into m groups in ascending order of frequency as

G = {E1,E2, . . . ,Em } and defines N = {n1,n2, . . . ,nm } where n1 < n2 < . . . < nm . The embed-

dings in the i-th group can only be quantized into the first ni meta-embeddings in each meta-table.
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Similarly, xLightFM [24] performs PQ in each feature field. Considering that the feature fields have

various sizes, xLightFM searches for the optimal size (i.e., the number of meta-embeddings) of the

meta-tables for each field. The search process is achieved by the DARTS algorithm, which is similar

to the embedding dimension search in Section 3.2.

Similar to PQ, AQ considers an embedding as a summation of s vectors: e =
∑s

i=1 ei . AQ gen-

erates its quantized embeddings by
∑s

i=1 I
i × T

i , I i = one-hot(arg maxk sim(e − ∑i−1
v=1 T

v
kv

,Ti
k

)),

where kv is the index of the selected meta-embedding in the v-th meta-table. Specifically, the first

meta-table takes the embedding e as input and outputs its nearest meta-embedding T
1
k1

. The sec-

ond meta-table then quantizes the residual part (e − T
1
k1

) into T
2
k2

and so on. The final output

embedding ê =
∑s

i=1 T
i
ki

. LightRec [34] adopts AQ to compress the item embeddings and uses a

pretrained model as a teacher to train the meta-tables effectively. LISA [63] utilizes AQ to compress

the DLRMs where self-attention is performed for sequence processing. Note that there is a mass

of inner product between embeddings in self-attention which suffers from extremely expensive

computing costs. To alleviate this problem, LISA pre-calculates the inner product between meta-

embeddings in the same meta-table and stores the results in a small table after training. Then, the

inner product of embeddings in self-attention can be calculated by summing the inner product of

meta-embeddings, which can accelerate the inference significantly.

4.3 Decomposition

Hashing and vector quantization use one-hot index vectors to perform a hard selection (i.e., select-

ing only one meta-embedding) in the meta-table and alleviate the collisions between features by

maintaining multiple meta-tables. In contrast, decomposition approaches make a soft selection by

summing over all the meta-embeddings in a meta-table T ∈ Rm×d with a real-valued index vector

I ∈ Rm . Due to the wide representation space of the real-valued index vectors, one meta-table is

sufficient to resolve the collisions between features. Each feature will have a unique index vector

stored in the index matrix IM ∈ Rn×m when formulating the decomposition as E = IM × T.

MLET [14] factorizes the embedding table E ∈ Rn×d in terms of IM ∈ Rn×m and T ∈ Rm×d .

In contrast to low-rank decomposition, where m < d , MLET decomposes the embedding table

into larger matrices (i.e., m > d) at training to ensure a larger optimization space. After training,

MLET generates the embedding table as E = IM × T for memory reduction and fast retrieval.

ANT [35] adopts a better initialization for T and imposes a sparse constraint on IM . Specifically,

ANT initializes the meta-table T by clustering the embeddings of a pretrained model. In addition,

to reduce redundancy, ANT uses an �1 penalty on IM and constrains its domain to be non-negative.

Instead of learning and storing the index vectors at training, DHE [27] develops a hash encoder

H : N → Rm to map each feature id into an index vector I ∈ Rm on the fly. Specifically,H (x ) =
[h1 (x ),h2 (x ), . . . ,hm (x )], where {hi }mi=1 is a group of hash functions. With the hash encoder, DHE

can eliminate the storage and optimization of IM . Moreover, considering that the index vectors are

deterministic and cannot be optimized, DHE further decomposes the meta-table T into a multi-

layer neural network to enhance its expressive ability.

In contrast to the above naïve decomposition, the authors of [56, 64, 71] use tensor train de-

composition (TTD) to decompose the embedding tables. As shown in Figure 6, the embedding

table E ∈ Rn×d will first be reshaped into E ∈ R(n1d1 )×(n2d2 )×...×(ns ds ) , where n =
∏s

i=1 ni and

d =
∏s

i=1 di . Then, E will be decomposed as E = G1 × G2 × . . . × Gs , where Gi ∈ Rri−1×ni di×ri .

{Gi }si=1 are called TT-cores and {ri }si=0 are called TT-ranks, in particular, r0 = rs = 1. TT-Rec [71] is

the first to use TTD on the embedding tables of DLRMs. It implements optimized kernels of TTD for

embedding tables. LLRec [56] uses TTD on the embedding tables while maintaining the prediction

accuracy by knowledge distillation. To enhance the compression capability of TTD, the authors of
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Fig. 6. Example of TTD and STTD, where r3 = 1, r1 = r2 = k = 2, and r0 is 1 in TTD and is 2 in STTD.

[64] further develop semi-tensor product–based tensor train decomposition (STTD). Semi-

tensor product is a generalization of matrix product. Specifically, given a ∈ R1×np and b ∈ Rp ,

a can be cut into p blocks {ai ∈ R1×n }pi=1 and a � b =
∑p

i=1 a
i × bi ∈ R1×n , where � is the left

semi-tensor product. For matrices A ∈ Rh×np and B ∈ Rp×q , A � B ∈ Rh×nq contains h × q blocks

and each block is the semi-tensor product between a row of A and a column of B. The authors of

[64] replace the conventional matrix tensor product of TTD with the left semi-tensor product. As

Figure 6 shows, in STTD, E = Ĝ1 � Ĝ2 � . . . � Ĝs , where Ĝi ∈ R
ri−1

k
× ni di

k
×ri ,r0 = k and rs = 1.

In addition, the authors of [64] use self-supervised knowledge distillation to reduce accuracy loss

from compression.

4.4 Discussion

Weight sharing approaches usually remarkably reduce memory usage. However, they suffer from

low efficiency at training due to extra computing cost for generating embeddings, especially the

nearest neighbor search in VQ and the matrix multiplication in decomposition approaches. The

extra computing cost will also slow down the inference speed except in VQ, where we can store

the results of inner product between meta-embeddings to accelerate the inference. Nevertheless,

VQ maintains the original embeddings during training, which requires extra memory usage. More-

over, these methods usually cannot improve prediction accuracy, especially hashing, which usually

causes a severe drop in accuracy.

5 SUMMARY

Embedding tables usually constitute a large portion of model parameters in DLRMs, which need

to be compressed for efficient and economical deployment. As recommender systems continue to

grow in scale, embedding compression has attracted more and more attention. In this survey, we

provide a comprehensive review of the embedding compression methods in recommender systems,

accompanied by a systematic and rational organization of existing studies.

The embedding table can be conceptualized as a matrix with three dimensions: the precision of

weights, the dimension of embeddings, and the number of embeddings. Consequently, we classify

embedding compression methods into three primary categories according to the dimensions they

compress: low precision, mixed dimension, and weight sharing. Low-precision methods reduce the

memory of each weight by decreasing its bit width, including binarization and quantization. Mixed-

dimension methods reduce the memory of specific embeddings by decreasing their dimensions,

including rule-based approaches, NAS-based approaches, and pruning. Weight-sharing methods

reduce the actual parameters of the embedding table by sharing weights among different embed-

dings, including hashing, VQ, and decomposition.

5.1 General Suggestions

In the above sections, we have discussed the pros and cons of different compression methods in

detail. However, there are no golden criteria to measure which one is the best. How to choose a
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proper compression method depends greatly on the application scenarios and requirements. There-

fore, we offer some general suggestions for the common requirements on the key metrics discussed

in Section 1.2: model accuracy, inference efficiency, training efficiency, and training memory usage.

— Model accuracy. In scenarios that demand high model accuracy, any accuracy degradation

caused by compression is deemed unacceptable. In such cases, mixed-dimension methods

are recommended as they have been reported to remove redundant parameters and avoid

model overfitting. With an appropriate compression ratio, mixed-dimension methods can

effectively compress embeddings while maintaining or even improving accuracy. Accuracy

can also be preserved when compressing embeddings by quantization with a higher bit

width. For instance, using a 16-bit representation has been proven to be sufficient for achiev-

ing accurate results. For scenarios that do not require high prediction accuracy, quantiza-

tion with lower bit width or even binarization (1-bit) can be employed to achieve stronger

compression.

— Inference efficiency. In scenarios such as online inference, model inference efficiency is of

paramount importance. Generally speaking, most embedding compression methods will not

have a great negative impact on inference speed. However, in several decomposition meth-

ods in which the embedding table is decomposed into multiple small matrices, the process of

recovering embeddings may introduce significant inference latency and should be avoided

in this context. To improve inference efficiency while compressing embeddings, VQ is sug-

gested, as the feature interaction (e.g., inner product) of embeddings can be pre-calculated

to accelerate the inference process. Binarization is also worth considering when there is no

high requirement on model accuracy. The calculation of feature interactions between binary

embeddings is faster compared with that between full-precision embeddings.

— Training efficiency. In scenarios in which the models are supposed to be updated in a

timely manner, training efficiency becomes a critical factor. However, it is unfortunate that

most embedding compression methods do not contribute to improving training efficiency. In

fact, some of them may significantly reduce training efficiency, particularly NAS-based ap-

proaches, pruning, VQ, and decomposition. Specifically, NAS-based approaches involve com-

plex calculations to search for optimal embedding dimensions, which can be computationally

intensive and time-consuming. Pruning often necessitates retraining to achieve higher accu-

racy, resulting in additional training overhead. VQ also involves cumbersome calculations

for nearest neighbor searches. Decomposition may require multiple matrix multiplications

to recover and retrieve embeddings. Therefore, in scenarios that prioritize training efficiency

and timely model updates, these methods are not recommended.

— Training memory usage. In scenarios in which computing devices have limited memory, it

is desirable to compress the training memory usage of embeddings or, at the very least, avoid

increasing it. In such cases, we suggest using rule-based approaches, hashing, or decomposi-

tion, as they can compress the embedding table before training. The low-precision training

of quantization is also worth considering, as the embeddings are stored in the format of inte-

gers during training. NAS-based approaches and vector quantization are not recommended

in this context. They often require storing a significant number of intermediate results to

guide the training process, which will consume more memory.

5.2 Future Prospects

Embedding compression in recommender systems has witnessed rapid development and notable

achievements, although there are still several challenging issues that require attention. We identify

several potential directions for further research in this field.

ACM Computing Surveys, Vol. 56, No. 5, Article 130. Publication date: January 2024.



130:16 S. Li et al.

— Low precision. The key problem faced by low-precision methods is the severe accuracy

degradation at extremely lower bit widths. In view of the extensive and advanced research

on quantization and binarization in the deep learning community, we can refer to related

techniques to alleviate the accuracy loss when compressing embeddings, which is quite chal-

lenging and valuable.

— Mixed dimension. In recent advanced mixed-dimension methods, there is a need to en-

hance the training efficiency of NAS-based approaches and pruning. To address this, we

recommend designing lighter NAS frameworks that can efficiently search for the optimal

embedding dimension. Finding solutions to avoid retraining pruned models is also crucial

for enhancing training efficiency. Furthermore, while numerous studies have demonstrated

the significant impact of the embedding dimension on model accuracy, there is still a lack of

theoretical understanding regarding how the embedding dimension precisely affects model

accuracy. Having a solid theoretical basis would be invaluable in guiding the optimal selec-

tion of embedding dimensions, enabling more efficient and effective model training.

— Weight-sharing. To approach the limit of weight sharing methods, we believe that an in-

triguing direction to explore is the use of embedding generation networks. Considering the

powerful representation capabilities of neural networks, we may learn a powerful neural net-

work to generate embeddings instead of directly learning and maintaining the embeddings

themselves.

— Hybrid approaches. Since the methods within the three primary categories compress the

embeddings from different dimensions and enjoy different advantages, we expect future re-

search to establish a unified method for compressing multiple dimensions or develop hybrid

approaches combining these techniques. By integrating the strengths of different compres-

sion methods, it is possible to create more powerful and comprehensive compression algo-

rithms.

— Open benchmarks. This review offers a thorough discussion of embedding compression

methods. However, we did not undertake an experimental comparison across these methods.

On one hand, distinct methods are applied to different tasks in recommender systems, each of

which has unique accuracy metrics. For example, in click-through rate (CTR) prediction, the

commonly used metric is the Area Under the Curve (AUC); whereas for rating prediction,

Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are typically em-

ployed. For Top-N recommendations, Mean Average Precision (MAP) and Normalized

Discounted Cumulative Gain (NDCG) are commonly utilized as accuracy metrics. On

the other hand, a majority of research relies on proprietary datasets without sharing open-

source code, presenting obstacles to reproducibility and comparative analyses. Nonetheless,

the implementation of these methods is not inherently complex. Given the focus on the

embedding tables, a solution involves the definition of a new embedding module during im-

plementation coupled with the rewriting of the lookup operation for the embedding vector.

Therefore, it is necessary to establish a foundational benchmark to evaluate the effectiveness

of distinct methods across a spectrum of tasks, such as BARS [81], a benchmark designed

for recommendations. We posit that this would substantially expedite the application and

advancement of this field.
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