
OptDist: Learning Optimal Distribution for Customer Lifetime
Value Prediction

Yunpeng Weng∗
edwinweng@tencent.com

FiT, Tencent
Shenzhen, Guangdong, China

Xing Tang∗
xing.tang@hotmail.com

FiT, Tencent
Shenzhen, Guangdong, China

Zhenhao Xu
zenhaoxu@tencent.com

FiT, Tencent
Shenzhen, Guangdong, China

Fuyuan Lyu†
fuyuan.lyu@mail.mcgill.ca
McGill University & MILA

Montreal, Canada

Dugang Liu‡
dugang.ldg@gmail.com

Guangdong Laboratory of Artificial
Intelligence and Digital Economy (SZ)

Shenzhen, Guangdong, China

Zexu Sun†
sunzexu21@ruc.edu.cn

Renmin University of China
Beijing, China

Xiuqiang He‡
xiuqianghe@tencent.com

FiT, Tencent
Shenzhen, Guangdong, China

Abstract
Customer Lifetime Value (CLTV) prediction is a critical task in
business applications, such as customer relationship management
(CRM), online marketing, etc. Accurately predicting CLTV is chal-
lenging in real-world business scenarios, as the distribution of
CLTV is complex and mutable. Firstly, there is a large number of
users without any consumption consisting of a long-tailed part that
is too complex to fit. Secondly, the small set of high-value users
spent orders of magnitude more than a typical user leading to a
wide range of the CLTV distribution which is hard to capture in a
single distribution. Existing approaches for CLTV estimation either
assume a prior probability distribution and fit a single group of
distribution-related parameters for all samples, or directly learn
from the posterior distribution with manually predefined buckets in
a heuristic manner. However, all these methods fail to handle com-
plex and mutable distributions. In this paper, we propose a novel
optimal distribution selection model (OptDist) for CLTV predic-
tion, which utilizes an adaptive optimal sub-distribution selection
mechanism to improve the accuracy of complex distribution model-
ing. Specifically, OptDist trains several candidate sub-distribution
networks in the distribution learning module (DLM) for modeling
the probability distribution of CLTV. Then, a distribution selection
module (DSM) is proposed to select the sub-distribution for each
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sample, thus making the selection automatically and adaptively.
Besides, we design an alignment mechanism that connects both
modules, which effectively guides the optimization. We conduct
extensive experiments on both two public and one private dataset
to verify that OptDist outperforms state-of-the-art baselines. Fur-
thermore, OptDist has been deployed on a large-scale financial
platform for customer acquisition marketing campaigns and the
online experiments also demonstrate the effectiveness of OptDist.
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1 Introduction
Predicting customer lifetime value (CLTV) is a task that refers to
the estimation of potential revenue a user may bring to a platform
or company [20, 37]. The accurate prediction of CLTV holds sig-
nificant importance in various commercial settings, such as online
advertising, marketing campaigns, and customer retention strate-
gies [17, 35, 38]. For example, CLTV is helpful for further decision-
making in customer acquisitionmarketing campaigns with resource
constraints. Specifically, we can predict CLTV for users in a speci-
fied duration on the commercial platform and put more resources
into attracting high-value customers, leading to efficient and effec-
tive utilization of budgets and higher Return on Investment (ROI).
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Some conventional methods can already be directly used for
CLTV modeling. One is the statistic-based approach [9, 11–13],
which assumes a probability distribution for CLTV and obtains
the parameters of the statistical distribution based on historical
statistical data, such as each customer’s consumption frequency
and so on. With the advance of deep learning, some value-based
approaches utilize a neural network to predict the exact value of
CLTV [8, 37, 39, 42]. However, statistic-based approaches only rely
on users’ history statistics without consideration of personalization.
For example, historical statistics such as frequency and recency may
be the same for some users, so these methods can only roughly pre-
dict the same CLTV for them. As to value-based approaches, most
of them adopt the Mean Squared Error (MSE) as the loss function
to train a regression model, which is very sensitive to the outliers
in CLTV. This leads to instability in the training and degradation
of the prediction performance. Therefore, these approaches cannot
predict CLTV well due to the complex and mutable distribution.

Recently, many efforts have been made to deal with the distri-
bution of CLTV. On the whole, these methods can be divided into
two categories. The first category introduces a deep probabilistic
model for CLTV modeling. Zero-inflated lognormal (ZILN) [37]
was commonly used to predict CLTV, which employs a deep neural
network to model the zero-inflated lognormal probabilistic distri-
bution. With inputting user and item attributes, the deep learning
model can predict CLTV for a particular user behavior on a specific
item. However, the real-world CLTV distribution is complex, with
significant differences in the distribution of different user groups.
For example, we divide users on a large-scale financial platform
into four user clusters based on their attributes and further illus-
trate the CLTV distribution of each user cluster in Fig. 1. Based on
the notable distribution difference between user groups, we can
conclude that utilizing one network to learn the related parameters
for all users may lead to insufficient learning. Another category is
dividing the training samples into several groups according to their
continuous CLTV values. Multi Distribution Multi Experts (MDME)
model [20] divides data examples into multiple predefined sub-
distributions based on user CLTV values, and each sub-distribution
further contains numerous predefined buckets. The model aims to
determine which sub-distribution the user belongs to and the opti-
mal bucket in that sub-distribution. Nevertheless, simply dividing
users into several groups requires rule-based bucketing operations
and involves extremely imbalanced classification errors due to nu-
merous zero-value values and high-value users. Moreover, even
with the equal-frequency bucketing operation, the CLTV distribu-
tion within the buckets might still be uneven, leading to errors in
bucket-normalized bias. Despite existing efforts, an adaptive way
to deal with CLTV prediction is still required.

To tackle the above limitations, we introduce a novel framework
named Optimal Distribution Selection (OptDist) for CLTV predic-
tion in this paper. Inspired by the intrinsic adaptive performance on
different data samples of AutoML [26, 27, 43], OptDist adopts a dis-
tribution selection network to automatically select sub-distribution
parameters for each example in a differentiable manner. Specifically,
instead of using one distribution for all the data examples, we train
multiple candidate sub-distribution networks (SDNs) for model-
ing the CLTV probabilistic distribution in the distribution learning
module (DLM) following a divide-and-conquer manner. Notice that
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Figure 1: The logarithmic CLTV distribution of a large-
scale financial platform, with four clusters representing user
groups obtained by the clustering algorithm. The x-axis rep-
resents log(𝐶𝐿𝑇𝑉 +1), and the y-axis shows the sample count.

each SDN concentrates on training a possible set of probabilistic
distribution parameters, thus reducing the complexity of the overall
CLTV modeling. Moreover, unlike existing methods that manually
partition training examples into different sub-distributions, OptDist
introduces a distribution selection module (DSM) that adaptively
selects one of the sub-distributions for each individual training
example with Gumbel-Softmax [18] operation. Therefore, at the
inference stage, we can use only the optimal sub-distribution se-
lected by the DSM for each predicted instance without creating a
gap between training and inference. However, training DSM and
the DLM still poses a challenge in this framework due to the dif-
ferent parameter sets in these two modules. We thus propose a
novel alignment mechanism to address the issue, which aligns the
probability output by DSM to the distribution of loss output by
DLM. The main contributions are summarized as follows:
• We propose a novel end-to-end CLTV prediction framework
named OptDist. Our OptDist explores multiple candidate prob-
abilistic distributions and selects the optimal sub-distribution
for each example, which can deal with the complex and mutable
distribution of customer lifetime value.
• We design two modules, DLM and DSM, respectively, to learn
the sub-distribution and distribution selection. We propose an
alignment mechanism connected with two modules to train the
framework. With two modules and an alignment mechanism,
OptDist can adaptively select the optimal sub-distribution for
each data example.
• We conduct comprehensive experiments on two public datasets
and a private industrial dataset to verify the superiority of our
proposed OptDist model over baselines. Moreover, we have em-
ployed OptDist on a large-scale financial platform for marketing
campaigns. The online A/B testing results also demonstrate the
effectiveness of OptDist.
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2 Related work
In this section, we give a brief review of some related work. Our
work is related to two topics: CLTV prediction and AutoML for the
recommendation. We summarize the work in the following.

2.1 CLTV Prediction
User response modeling is essential for online marketing and rec-
ommendation systems. Traditional methods, such as click-through
prediction or conversion prediction models, have shown limitations
in business scenarios that aim to maximize Gross Merchandise Vol-
ume (GMV). Hence, some work [34] emphasized the necessity to
estimate revenue for recommendation systems, accounting for user
behavior, conversion rate, and click rate in a ranking model. To
improve ROI and GMV, CLTV estimation emerged as an essential
metric to evaluate commercial impact. Conventional statistic-based
methods, including RFM [12] and Pareto/NBD [4, 13, 32] models,
mainly focus on historical data but neglect rich user attribute infor-
mation. Hence, some work incorporate the user information into
the prediction model. Two-stage modeling approaches to predict
both the likelihood of purchase and the value of customers are
proposed in [10, 35]. Word2vec [30] is leveraged for creating user
embeddings to predict CLTV [6]. Besides, some work investigated
various sequential models for behaviors in CLTV [3, 39], combin-
ing RNNs with gradient boosting machines (GBMs) [3] to capture
historical customer behavior, or employing wavelet transforms and
attention-based GRU for analyzing user behavior sequences [39].
MarfNet [40] addresses the feature missing problem in the CLTV
modeling. These works are perpendicular to our study and can po-
tentially be combined with our method for further improvements.
Introduced a prior distribution, ZILN [37] gives amulti-task solution
for CLTV prediction combined classification of returning customers
and prediction of returning customer spend. ExpLTV [41] further ex-
tends the ZILN to both game whale detection and CLTV prediction.
Moreover, Order Dependency Monotonic Network [20] designed
the order dependency monotonic network (ODMN) for modeling
ordered dependencies between CLTVs to predict the value of CLTV
in different periods. At each period, it uses a multi-distribution
multi-expert (MDME) module that predicts the classification prob-
abilities with pre-defined buckets and uses them to select proper
experts to predict CLTV in certain ranges.

2.2 AutoML for Recommendation
In recent years, Automated Machine Learning (AutoML) techniques
have gained considerable attention in the recommendation domain
for their ability to automatically and efficiently find the best ma-
chine learning models and improve performance [7, 21, 46]. Most
previous research focuses on parameter searching such as embed-
ding size [28, 44, 45] and the process patterns of features including
feature bucketing, interaction [15, 25]. As to embedding size search,
AutoEmb [44] proposed an AutoML-driven approach that decides
the optimal embedding size for user/item feature fields based on the
contextual information and their popularity. AutoDim [45] is also
proposed for embedding size searching, which learns multiple can-
didate embeddings with different embedding sizes for each feature
field and uses the Gumbel-softmax trick to select the best embed-
ding size. To achieve automated continuous feature discretization

and embedding for enhancing model performance, AutoDis [15]
is proposed by incorporating meta-embedding and automatic dis-
cretization modules. AutoCross [25] focused on the automatic fea-
ture interaction operation, which performs beam search in a tree-
structured space and generates high-order cross features. Different
from the aforementioned studies that focused on feature processing
and representation learning, AutoLoss [43] focuses on the search
for an appropriate loss function, which involves multiple candidate
loss functions and a controller to determine their probabilities. Opt-
Dist first introduces AutoML technique to CLTV prediction, which
adaptively searches the optimal distribution for data instances.

3 Method
The overall framework of OptDist is illustrated in Fig. 2. OptDist
mainly consists of shared representation learning, a distribution
learning module (DLM), and a distribution selection module (DSM).
The shared representation learning transforms the original features
into dense vectors. DLM comprises multiple sub-networks learning
the parameters of one particular probabilistic distribution. The
DSM contains a distribution selection network that aims to select
an optimal candidate sub-distribution from DLM for each data
instance. Then, we describe the alignment mechanism and how to
optimize our method.

3.1 Problem Formulation
3.1.1 Customer Lifetime Value Prediction. We first give the formu-
lation of CLTV prediction problem. Given a set of 𝑁 usersU and
the total revenue a user 𝑢 brings to the platform in a fixed time
window 𝑑 . Each sample in the training dataset D = {(x𝑢 , 𝑦𝑢 ) |𝑢 ∈
U, 𝑦𝑢 ∈ [0, +∞)} contains the input feature x𝑢 and the CLTV label
𝑦𝑢 ≥ 0. In general, we predict the CLTV with the model 𝑓 (·), which
can be formulated as follows,

𝑦𝑢 = 𝑓 (x𝑢 | D,Θ), (1)

L(ŷ, y) =
U∑︁
𝑢=1
L𝑢 (𝑦𝑢 , 𝑦𝑢 ), (2)

where 𝑦𝑢 is the prediction CLTV, i.e. pLTV, Θ denotes the parame-
ters of the model, and L is loss function for each users L𝑢 .

3.1.2 Optimal Distribution Selection. Based on Eq. 1, Θ is usually
a probabilistic model that is hard to capture CLTV distribution as
discussed above. We thus divided a single probabilistic model into a
series of sub-distributionmodelsΘ = [𝜃1, · · · , 𝜃𝐿].We construct the
distribution selection as learning a mask vector 𝝅𝑢 for particular
user and denotes Θ̃ = 𝝅𝑢 ⊙ Θ = [𝜋𝑢,1𝜃1, · · · , 𝜋𝑢,𝐿𝜃𝐿]. With the
notations defined above, our optimal distribution selection problem
is formally defined as follows:

𝜃★ = argmin
𝝅𝑢 ,Θ

L𝑢 (𝑓 (x𝑢 | D, 𝝅𝑢 ⊙ Θ), 𝑦), (3)

𝑠 .𝑡 .

𝐿∑︁
𝑙=1

𝜋𝑢,𝑙 = 1, 𝜋𝑢,𝑙 ∈ {0, 1},
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Figure 2: The overall framework of our proposed OptDist.

where 𝐿 is the number of candidate sub-distributions to select and
𝜃𝑙 s are initialized with different seeds to increase diversity between
sub-distributions.

3.2 Shared Representation Learning
The input feature x𝑢 ∈ R𝑚 mainly consists of categorical and
continuous features. Usually, each categorical feature 𝑥𝑖 , such as
the user’s city or gender, will be embedded into a low dimensional
vector e𝑖 via the embedding table. For continuous features such
as the number of visits, we normalize them using Z-score [2] and
treat them as a one-dimensional vector e𝑗 . All feature vectors are
concatenated together:

h = [e1, e2, ..., em] . (4)

Subsequently, h will be transformed by shared bottom layers
to generate a shared sample representation and fed into the DLM
and DSM, respectively. Note that h is input for DSM and DLM.
Therefore, other representation learning modules for specific tasks
can be easily plugged into our framework, such as MarfNet [40] for
missing feature problems, CDAF [33] for cross-domain adaption,
and so on.

3.3 Distributions Learning Module
As shown in Fig. 1, capturing the CLTV distribution within one dis-
tribution is challenging due to the large fraction of zero-consumption
customers and a small number of high-value customers for most
business scenarios. Therefore, we adopt the idea of Divide-and-
Conquer, which introduces several neural networks to learn part of
the distribution.

Specifically, we assume that the overall complex distribution of
CLTV comprises several sub-distributions, and each user belongs
to one of these sub-distributions. We use several sub-networks,
denoted as sub-distribution networks (SDNs), to model each sub-
distribution. Each SDN focuses on learning from a subset of users
with similar distributions, thus avoiding the impact of significant

distribution differences between users on the effectiveness of pa-
rameter learning. Therefore, OptDist reduces the difficulty of over-
all probabilistic distribution modeling. Notice that different from
the method in [20], which manually divides samples into sub-
distributions based on the ground truth in advance, OptDist searches
the optimal sub-distribution to which each user belongs automati-
cally.

Note that there are two critical issues in this module. First, it is
crucial to determine the sub-distribution network, which indicates
how to model the distribution. As is previously stated, zero-inflated
lognormal distribution [37] is specially proposed for the CLTV
distribution. The ZILN loss alleviates the problem of commonly
used MSE loss being overly sensitive to extreme values. Therefore,
we adopt the network for ZILN loss in our framework as SDNs.
Second, howmany neural networks will be set can decide the search
space in our OptDist. In the training, each user representation h𝑢
will be fed into the fixed number of candidate SDNs, obtaining a set
of different ZLIN distribution parameters {𝜃1 = (𝑝1, 𝜇1, 𝜎1), 𝜃2 =

(𝑝2, 𝜇2, 𝜎2), ..., 𝜃𝐿 = (𝑝𝐿, 𝜇𝐿, 𝜎𝐿)}. As a result, the search space can
be 𝑁𝐿 , which poses a significant challenge to search in a large-scale
platform. Hence, there is a trade-off to determine the 𝐿. If 𝐿 is too
large, it will increase the burden of searching, while too small will
lead to the model’s inability to fit complex distributions. Thus, we
set 𝐿 as a hyperparameter, which can be efficiently explored in our
framework. In conclusion, we calculate the negative log-likelihood
loss of user 𝑢 for each SDN𝑖 :

L𝑢,𝑖 =


− log(𝑝𝑢,𝑖 ) + log(𝑦𝑢

√
2𝜋𝜎𝑢,𝑖 ) +

(log𝑦𝑢 − 𝜇𝑢,𝑖 )2

2𝜎𝑢,𝑖2
, 𝐶𝑢 = 1

− log(1 − 𝑝𝑢,𝑖 ), 𝐶𝑢 = 0
(5)

where 𝐶𝑢 denotes whether the user 𝑢 is converted and 𝑦𝑢 is the
CLTV label. Then, we re-write Eq. 3 to obtain the specific loss
function L𝑢 by calculating the weighted sum of losses for each

2526



OptDist: Learning Optimal Distribution for Customer Lifetime Value Prediction CIKM ’24, October 21–25, 2024, Boise, ID, USA

SDN for each user:

L𝑢 =

𝐿∑︁
𝑖=1

𝜋𝑢,𝑖 · L𝑢,𝑖 , (6)

where 𝜋𝑢,𝑖 is weight of user𝑢 for the 𝑖-th candidate sub-distribution.
𝜋𝑢,𝑖 is obtained from the output of the DSM module, which is
discussed in the next section.

3.4 Distribution Selection Module
Tackling the optimal distribution selection problem in Eq. 3 is chal-
lenging in our OptDist. As a potential solution, the reinforcement
learning agent can only receive the reward until the optimal distri-
bution network is selected. This prevents the direct application of
reinforcement learning due to delayed rewards. Hence, to determine
the weights in Eq. 6, OptDist introduces a distribution selection
module following the design in [43].

Our OptDist adopts the Multi-Layer Perceptron (MLP) as the
optimal distribution selection network. The output of the optimal
distribution selection network is formulated as follows:

𝜶𝑢 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (MLP(h𝑢 |𝜃𝑚𝑙𝑝 )), (7)

where 𝜃𝑚𝑙𝑝 is the parameters of MLP. It is worth noting that the se-
lection network can be easily substituted with other more powerful
models [16, 36], which is out of the scope of this paper.

However, using softmax operations might produce relatively
smooth weights. This may lead to the selected SDN training being
influenced by the losses of other SDNs, resulting in sub-optimal
results. Gumbel-max sampling [14] is a technique that enables hard
selection:

𝑆𝑢 = one_hot(argmax
𝑖

[log𝛼𝑢,𝑖 + 𝑔𝑢,𝑖 ]), (8)

𝑔𝑢,𝑖 = − log(− log(𝑈𝑢,𝑖 )),
𝑈𝑢,𝑖 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1) .

However, this discrete selection is non-differentiable due to the
argmax operation. To tackle this, we employ the straight-through
Gumbel-softmax [18]:

𝜋𝑢,𝑖 =
exp((𝑙𝑜𝑔(𝛼𝑢,𝑖 ) + 𝑔𝑢,𝑖 )/𝜏)∑
𝑖 exp((𝑙𝑜𝑔(𝛼𝑢,𝑖 ) + 𝑔𝑢,𝑖 )/𝜏)

, (9)

where 𝜏 is the temperature parameter, which controls the approxi-
mation degree between the Gumbel-softmax distribution and the
discrete distribution. As 𝜏 approaches 0, the effect of Eq. 9 becomes
closer to the argmax operation, thus getting the mask vector 𝝅𝑢 .

3.5 Alignment Mechanism
As in Eq. 6, we need to optimize the loss function with outputs
from both modules. Specifically, the DLMmodule will update distri-
bution network parameters, while DSM also updates the selection
policy accordingly, making optimization difficult and sub-optimal.
To further enhance the optimization, we propose an alignment
mechanism inspired by meta pseudo labels [31].

In our OptDist, each SDN within the DLM module focuses on
training with instances allocated to that sub-distribution by the
DSM. However, two individual sets of parameters in our OptDist
interfere with each other during optimization. Meanwhile, there is

DLM

DSM

Ha
rd

Soft

[0,1,0,0] [0.2,0.6,0.1,0.1]

. . .

Figure 3: The alignment mechanism between DSM and DLM.
𝑄 denotes the set of SDN’s losses.

a lack of explicit supervised signals for the DSM, which is hard to
align with the output of DLM. It is challenging to train both DSM
and DLM well merely relying on the loss L𝑢 . By normalizing the
loss values generated by different SDNs for each user, the alignment
mechanism can generate pseudo labels to guide the training of
the DSM, reducing the difficulty of searching for the optimal sub-
distribution for DSM. As Fig. 3 illustrated, when a set of loss values
on possible distribution Q = {L𝑢,𝑖 }𝐿𝑖=1 is given, we can obtain the
hard pseudo labels y𝑝𝑢 from these loss values:

y𝑝𝑢 = one_hot(argmin𝑖 (L𝑢,𝑖 )) . (10)
First, the hard label y𝑝 can construct a cross-entropy loss. In

addition, considering that in practical applications, the classification
of CLTV is imbalanced, which may result in the cross-entropy
of high-value users being overlooked, making it challenging for
DSM to distinguish them. Therefore, to mitigate this issue, we have
introduced a variant of focal weight [22] in the cross-entropy loss.
The loss function can be defined as:

L𝐶𝐸𝑢 =

𝐿∑︁
𝑖=1
−𝑦𝑝
𝑢,𝑖
(1 − 𝛼𝑢,𝑖 )2 log(𝛼𝑢,𝑖 ) . (11)

Then, we generate soft labels based on the losses for each sub-
distribution:

𝑦𝜔𝑢 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (−L𝑢 ) = [𝜔𝑢,1, 𝜔𝑢,2, ..., 𝜔𝑢,𝐿] (12)

𝜔𝑢,𝑖 =
exp(−L𝑢,𝑖 )∑
𝑗 exp(−L𝑢,𝑗 )

. (13)

The larger the 𝜔𝑢,𝑖 , the more suitable the 𝑖-th sub-distribution is
for user 𝑢 according to DLM. Then, we adopt Kullback-Leibler (KL)
divergence [5] between DLM and DSM:

L𝐾𝐿𝑢 =

𝐿∑︁
𝑖=1

𝜔𝑢,𝑖 log(
𝜔𝑢,𝑖

𝛼𝑢,𝑖
) . (14)

The advantage of considering both hard and soft labels here lies in
that a hard label can make DSM focus on DLM information while
ignoring other label information, which is complemented by soft
labels. In summary, the overall loss for OptDist is defined as:

L𝑂𝑝𝑡𝐷𝑖𝑠𝑡 = 1
𝑁

∑︁
u∈U
(L𝑢 + L𝐶𝐸𝑢 + L𝐾𝐿𝑢 ). (15)
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3.6 Optimization and Inference
3.6.1 Optimization Method. In OptDist, the trainable parameters
come from DLM and DSM. We denote the parameters of DLM and
DSM as Θ𝐿 = {𝜃1, · · · , 𝜃𝐿} and Θ𝑆 = {𝜃𝑚𝑙𝑝 }, respectively. Note
that 𝝅𝑢 in Eq. 3 is directly generated by DSM as in Eq. 9. Here, we
mainly discuss how to optimize the framework parameters. We
form a bi-level optimization problem for our OptDist as follows:

min
Θ𝑆

L𝑂𝑝𝑡𝐷𝑖𝑠𝑡
𝑣𝑎𝑙

(Θ★
𝐿 ,Θ𝑆 ),

𝑠 .𝑡 . Θ★
𝐿 = argmin

Θ𝐿

L𝑂𝑝𝑡𝐷𝑖𝑠𝑡
𝑡𝑟𝑎𝑖𝑛

(Θ𝐿,Θ★
𝑆 ),

(16)

where DLM parameters Θ𝐿 and DSM parameters Θ𝑆 are considered
as the upper- and lower-level variables. However, this formulation
increases the complexity of model training. Therefore, We adopt
an approximation scheme strategy by differentiable architecture
search (DARTS) [23]. All the parameters of OptDist, denoted as
Θ = {Θ𝐿,Θ𝑆 }, are updated as follows within each mini-batch:

Θ̂ = Θ − 𝜂 · ▽L𝑂𝑝𝑡𝐷𝑖𝑠𝑡
𝑡𝑟𝑎𝑖𝑛

, (17)
where 𝜂 is the learning rate. Note that Θ𝐿 and Θ𝑆 have shared and
independent parameters, where the alignmentmechanism alleviates
the difficulty of approximating one-level optimization.

3.6.2 Inference Stage. For each instance to be predicted x, OptDist
first obtains the representation h through the shared embedding
bottom. Then, the representation is fed into DSM, which will output
the probability 𝛼 that this instance belongs to each sub-distribution.
Only the optimal SDN’s output will be employed for the predicted
CLTV calculation in this stage, and the index of that SDN could be
obtained with argument max operation on 𝛼 :

𝑠 = argmax ( [𝛼1, 𝛼2, ..., 𝛼𝐿]) . (18)

With the index of selected distribution, the model can fetch the op-
timal distribution parameters 𝜃𝑠 = (𝑝𝑠 , 𝜇𝑠 , 𝜎𝑠 ) from the correspond-
ing SDN’s output and combine them with the expectation formula
of the log-normal distribution to obtain the estimated CLTV:

𝑦 = 𝑝𝑠 × exp(𝜇𝑠 + 𝜎2𝑠 /2) . (19)

The Algorithm. 1 summarizes the optimization and inference
process of OptDist. In lines 2-4, the sample representation is fed
into several sub-networks to obtain the sub-distribution parameters.
Since each sub-distribution only needs to handle the sub-problems
of modeling the CLTV probability for a part of similar samples, the
sub-network can be processed using a relatively simple MLP and
can be parallelized, thus not increasing the time complexity of the
model. Lines 5 and 6 present the output of DSM, while distribution
evaluation is conducted from Line 7 to Line 11. Line 12 carries out
the parameter update for the model. Finally, the predicted results
are obtained according to Lines 13-14.

4 experiment
In this section, we conduct both offline and online experiments to
demonstrate the effectiveness of our proposed Optdist and answer
the following research questions:
• RQ1: How does the offline and online performance of our pro-
posed OptDist compare with mainstream baselines?

Algorithm 1: An Optimization Algorithm for OptDist
Input: Input features X = {xu |∀𝑢 ∈ U};
number of sub-distribution 𝐿;
temperature 𝜏 ;
Initial model parameters Θ;
Learning rate 𝜂;
Output: Predicted CLTV 𝑦

Trained model parameters Θ̂;
1 H = 𝐸𝑚𝑏 (X);
2 for i = 1 to 𝐿 do
3 (𝑝𝑖 , 𝜇𝑖 , 𝜎𝑖 ) ← 𝑆𝐷𝑁𝑖 (H) ;
4 end
5 𝛼 = softmax( MLP(H));
6 𝜋 = 𝑔𝑢𝑚𝑏𝑒𝑙_𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑙𝑜𝑔(𝛼), 𝜏)
7 for i = 1 to 𝐿 do
8 calculate the negative log-likelihood loss L𝑖 for the

corresponding sub-distribution 𝑆𝐷𝑁𝑖 ;
9 end

10 Generate the hard label and soft label according to Eq. 10
and Eq. 13 respectively;

11 Calculate the loss L according to Eq. 6 - Eq. 15.
12 Θ̂← Θ - 𝜂 · ▽L𝑂𝑝𝑡𝐷𝑖𝑠𝑡
13 𝑠 = argmax(𝛼)
14 𝑦 = 𝑝𝑠 × exp(𝜇𝑠 + 𝜎2𝑠 /2)

• RQ2: How do the key hyper-parameters influence the perfor-
mance of OptDist?
• RQ3: What is the impact of the alignment mechanism in OptDist
on the final result?
• RQ4: Can OptDist learn optimal sub-distribution?

4.1 Experimental Setup
4.1.1 Dataset. We conduct experiments on two public datasets
and one private industrial dataset. In the following dataset, we
randomly split them into 7:1:2 as the training, validation, and test
sets, respectively.

Criteo-SSC.1 The Criteo Sponsored Search Conversion (Criteo-
SSC) Dataset is a large-scale public dataset, which contains logs
obtained from Criteo Predictive Search (CPS). Each row in the
dataset represents a user’s click behavior on a product advertise-
ment and contains information about the product’s attributes and
the user’s characteristics. The label is whether the click led to a
conversion and the corresponding revenue within 30 days. Note
that we remove the product price from the features.

Kaggle.2 TheKaggle’s Acquire Valued Shoppers Challenge dataset,
hereafter referred to as the Kaggle Dataset, contains transaction
records of over 300,000 shoppers at about 3,300 companies. Similar
to the experimental setting of the previous research [37], the task
we consider is to predict the total value of a company’s products
purchased by a user in the year following their initial purchase and
focus on the customers whose initial purchase occurred between

1https://ailab.criteo.com/criteo-sponsored-search-conversion-log-dataset/
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge
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Table 1: Dataset Statistics

Dataset Samples Positive Samples Positive Ratio

Criteo-SSC 15,995,633 1,150,996 7.20%

Kaggle 805,753 726,180 90.12%

Industrial 4.535,675 287,934 6.35%

2012-03-01 and 2012-07-01. We retain the three companies with the
most transactions.

Industrial. The private dataset is collected from a large-scale
financial platform that offers mutual funds from various fund com-
panies. Since customers can freely determine their investment
amounts, the distribution of their customer lifetime value (CLTV)
is very complex. The dataset consists of over 4.5 million samples,
each corresponding to the profiles and access behavior features of a
new user who has never invested in the platform. The model aims
to predict whether these users will convert within the next 30 days
and estimate their corresponding CLTV.

Table. 1 summarizes the details of these three datasets.

4.1.2 Metrics. The CLTV prediction is continuous, and thus, we
use MAE to measure the deviation between the predicted value
and the actual CLTV of the user, which is widely used as a metric in
regression tasks [19]. In practical business applications, marketing
resources tend to be allocated toward customers with higher CLTV,
and thus, the accuracy of ranking users based on the predicted
CLTV is more concerned [40]. Following the previous research [37,
40], we adopt both Spearman rank correlation (Spearman’s 𝜌)
and the normalized Gini coefficient (Norm-GINI) to evaluate.
Notice that the larger this value, the better the CLTV prediction
is. Apart from using these two ranking metrics to evaluate the
overall ranking performance of the models on all samples, we also
perform evaluations on positive samples separately to compare the
distinguishing ability of models for non-zero CLTV samples, which
are denoted as Norm-GINI(+) and Spearman’s 𝜌 (+).

4.1.3 Baselines. We compared our proposed OptDist with several
state-of-the-art CLTV prediction approaches. Note that some ap-
proaches focusing on representation learning [6, 39, 40] are not
included here. The baselines are summarized as follows:
• Two-stage [10]. It decomposes the CLTV prediction into two
tasks: the first task is a classification task predicting whether a
user will churn or not, and the second task is a regression task
predicting the revenue that the user brings.
• MTL-MSE [29]. It estimates conversion rate and CLTV with MSE
loss according to the multi-task learning paradigm.
• ZILN [37]. ZILN assumes that the long-tailed CLTV distribution
follows a zero-inflated log-normal distribution and uses a DNN
to estimate the mean 𝜇, standard deviation 𝜎 , and conversion
rate 𝑝 for the samples.
• MDME [20]. This baseline divides the training samples by CLTV
into multiple sub-distributions and buckets, and constructs corre-
sponding classification problems to predict the bucket a sample
belongs to. In the next stage, the bias within the bucket is esti-
mated so that the samples obtain a fine-grained CLTV value.

• MDAN [24]. MDAN predicts predefined LTV bucket labels using
a multi-classification network and leverages a multi-channel
learning network to derive embeddings for each bucket. The final
sample representation is obtained by fusing these embeddings
with the classification network’s output through a weighted sum,
which is then utilized for CLTV prediction.

4.1.4 Implementation Details. In this subsection, we provide the
implementation details. For a fair comparison, in all experiments
of OptDist and all baselines, the learning rate was chosen from
[5e-4, 1e-3, 1.5e-3, 2e-3, 2.5e-3]. For both the two public datasets,
the batch size was set to 2048, and the embedding size was 5. For the
industrial dataset, the batch size was set to 512 and the embedding
size was 12. For ZILN, MSE, and MTL-MSE, the size of the MLP part
was set to [64, 64, 64] for the Kaggle dataset, [512, 256, 64] for the
Criteo-SSC dataset, and [512, 256, 128] for the industrial dataset. For
OptDist’s each SDN, MDME’s each bucket network, and MDAN’s
each channel network, the corresponding size was set to [64, 32, 32],
[256, 128, 64], and [256, 128, 64], respectively.

Our implementation is based on Tensorflow [1] and all exper-
iments are conducted on a Linux server with one Nvidia-Tesla
V100-PCIe-32GB GPU, 128GB main memory, and 8 Intel(R) Xeon(R)
Gold 6140 CPU cores. Note that the source code of the model im-
plementation is available3.

4.2 Performance Comparison(RQ1)
In Table 2, we present the evaluation results of each model on
testing sets of all datasets, respectively. Based on these results, we
have the following insightful observations:
• MTL-MSE has better performance in the overall dataset evalua-
tion compared to the two-stage model. In evaluating the positive
sample space, MTL-MSE is not necessarily superior to the two-
stage models. This is because, in the two-stage methods, the
learning of CLTV is more sufficient for those users with a high
predicted conversion rate, and the performance of MTL-MSE
might be affected by the seesaw phenomenon.
• The overall performance of ZILN is better than that of both two-
stage and MTL-MSE, indicating that modeling the probability
distribution of CLTV can alleviate the problem of MSE being
sensitive to extreme values.
• The performance of MDME is unstable across the datasets. For
example, it has a small MAE on the Criteo-SSC dataset, but both
the Norm-GINI and Spearman’s rank correlation metrics are poor,
indicating that its ranking ability is weak on this dataset. On the
Industrial dataset, although the overall Spearman’s 𝜌 is relatively
better than ZILN, the overall Norm-GINI as well as the ranking
metrics in the positive sample space are significantly weaker
than those of ZILN and OptDist. This is because MDME needs
to predict the sub-distribution and bucket to which the samples
belong, as well as the position of the samples within the bucket,
which might lead to the amplification of accumulated errors. Al-
though MDAN achieves more stable results compared to MDME
by fusing the embeddings of multiple channels, it still requires
predefined bucketing. Additionally, it uses a single prediction
network to estimate CLTV after integrating representations from

3https://github.com/sysuwyp/CLTV
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Table 2: The overall performance of different models on all datasets. ↑ indicates that the higher value of the metric is better,
while ↓ signifies the opposite. † indicates statistically significant improvement over the best baseline(p-value < 0.05).

Dataset Model MAE ↓ Norm-GINI ↑ Spearman’s 𝜌 ↑ Norm-GINI(+) ↑ Spearman’s 𝜌(+) ↑

Criteo-SSC

Two-stage 21.719 0.5278 0.2386 0.2204 0.2565
MTL-MSE 21.190 0.6330 0.2478 0.4340 0.3663

ZILN 20.880 0.6338 0.2434 0.4426 0.3874
MDME 16.598 0.4383 0.2269 0.2297 0.2952
MDAN 20.030 0.6209 0.2470 0.4128 0.3521
OptDist 15.784 † 0.6437 † 0.2505 0.4428 0.3903

Kaggle

Two-stage 74.782 0.5498 0.4313 0.5505 0.4596
MTL-MSE 74.065 0.5503 0.4329 0.5349 0.4328

ZILN 72.528 0.6693 0.5239 0.6627 0.5303
MDME 72.900 0.6305 0.5163 0.6213 0.5289
MDAN 73.940 0.6648 0.4367 0.6680 0.4567
OptDist 70.929† 0.6814 † 0.5249 0.6715† 0.5346†

Industrial

Two-stage 0.887 0.6670 0.0781 0.5588 0.4467
MTL-MSE 0.548 0.7194 0.1161 0.5575 0.4274

ZILN 0.389 0.7854 0.1208 0.5899 0.5401
MDME 0.419 0.7277 0.1229 0.5609 0.5119
MDAN 0.437 0.7629 0.1214 0.5816 0.5383
OptDist 0.322† 0.8283 † 0.1282† 0.6271† 0.5476†

various channels, which may not effectively capture complex
CLTV distributions, limiting the model’s performance.
• Our proposed OptDist outperforms baselines across the three
datasets. This indicates that by adaptively learning different sub-
distribution parameters and selecting the optimal sub-distribution,
it is possible to decompose the complex overall distribution into
multiple relatively easy-to-learn subproblems, thereby improv-
ing the model’s predictive performance. Moreover, OptDist does
not require additional predefined bucketing of samples, which
enables incremental training and quick deployment to other new
scenarios. Due to the typically high proportion of zero-value sam-
ples in CLTV estimation problems, achieving equal frequency
bucketing for MDME is difficult. Moreover, even if the positive
sample bucketing is at equal frequency, the CLTV distribution
within the bucket may not be uniform, leading to inaccurate
bucket bias estimation.

4.3 Hyper-Parameter Sensitivity Analysis(RQ2)
In the DSM of our OptDist, Gumbel-softmax’s temperature coeffi-
cient affects each SDN’s weights in L𝑢 . Moreover, the number of
sub-distributions in DLM is also a critical hyper-parameter. There-
fore, this section investigates how these two hyper-parameters
affect our framework. Note that we mainly focus on the Norm-GINI
evaluation of the overall samples in practical business scenarios,
as it indicates whether the model can help allocate marketing re-
sources to users with the highest CLTV [40]. Therefore, concerning
this metric, we mainly discuss the influence of different parameters
on OptDist performance. For each dataset, we vary the number
of sub-distributions in the set {2, 3, 4, 5, 6}. In general, on the one
hand, a dataset with a more complex overall distribution may con-
tain more sub-distributions, requiring more SDNs for modeling.
On the other hand, an increase in the number of sub-distributions
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Figure 4: Norm-GINI of OptDist with different hyper-
parameters on the three datasets.

also increases the difficulty of learning with DSM. In Fig. 4 (a),
we display the ranking performance of the model with different
sub-distribution settings. For the Kaggle and Criteo-SSC datasets,
the performance of the model is best when the number of sub-
distributions is 4, while for the industrial dataset, the performance
is best when the number of sub-distributions is 5. Fig. 4(b) shows
the performance of the framework under different Gumbel-softmax
temperature coefficients. When the temperature coefficient is too
high, the sampling probability becomes smoother, and the sample
cannot focus on the training of the sub-distribution it selected, thus
affecting the performance.

4.4 Ablation Study and Case Study(RQ3&RQ4)
In this subsection, we perform the ablation experiments and case
analysis to study the impact of different parts of OptDist. Firstly,
we compare the OptDist with different derivations in terms of
Norm-GINI of the overall samples: (1) (w/o) Gumbel-softmax:
Remove the Gumbel-softmax operation and use the plain softmax
to generate the mask vector. (2) (w/o) L𝐾𝐿 : Remove the term of
KL divergence loss from the alignment mechanism. (3) (w/o) L𝐶𝐸𝑢 :
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Table 3: Norm-GINI of Optdist and its derivations.

Method Criteo-SSC Kaggle Industrial

OptDist 0.6437 0.6814 0.8283

(w/o) Gumbel-softmax 0.6389 0.6628 0.8231

(w/o) L𝐾𝐿 0.6382 0.6786 0.8158

(w/o) L𝐶𝐸𝑢 0.6366 0.6761 0.8107

(w/o) L𝐾𝐿 + L𝐶𝐸𝑢 0.6361 0.6740 0.8023
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Figure 5: Difference among sub-distributions in terms of
actual CLTV and predictions (𝑦) on Kaggle dataset.

Remove the term of cross-entropy from the alignment mechanism.
(4) (w/o) L𝐾𝐿 + L𝐶𝐸𝑢 : Omit the alignment mechanism of DSM.

We then summarize the results of ablation experiments in Ta-
ble 3. Firstly, it indicates the Gumbel-softmax operation can help
the OptDist improve prediction performance. Note that Gumbel-
softmax is used to achieve an approximate discrete sampling and
makes each SDN focus on learning from a subset of users with
similar distributions. Secondly, after removing the alignment mech-
anism, the performance of OptDist degraded, which indicates that
the alignment mechanism can effectively alleviate the training diffi-
culty caused by the large search space. We also conduct an ablation
study on both terms to investigate further the effect of KL loss
and CE loss in the alignment mechanism. As it indicates, both KL
divergence loss and cross-entropy loss in the alignment mechanism
boost the performance, verifying our design on soft labels and hard
labels. Specifically, the cross-entropy loss can make DSM training
based on a guide of the best sub-distribution, and KL divergence
loss ensures the DSM also takes other sub-distribution into account.

To intuitively illustrate the effectiveness of decomposing the
distribution into multiple sub-distribution modeling in DLM, we
conduct a case analysis on the Kaggle dataset. Fig. 5 visualizes the
distributions of users in each sub-distribution in terms of actual
CLTV and prediction by OptDist. The box plots indicate that Opt-
Dist can select the optimal distribution for each user and fit the
sub-distribution, respectively.

4.5 Online A/B Testing(RQ1)
We have deployed the OptDist proposed in this paper on a large-
scale financial platform to predict user CLTV on the platform and
apply it to audience targeting in marketing campaigns.

Table 4: The relative improvement of our OptDist compared
to baseline in terms of theROI on different online campaigns.

Campaign ID ROI-7 ROI-14 ROI-30

Campaign A +8.96% +17.31% +21.90%
Campaign B +9.04% +9.83% +12.51%
Campaign C +6.47% +8.68% +11.45%
Campaign D +14.42% +16.53% +19.06%

To ensure the fairness of the experiment, for each marketing
campaign, we randomly take 50% of the traffic to the experimental
group and the other 50% to the control group, ensuring that the
two groups of users are homogeneous. Additionally, the marketing
resources allocated to each group of traffic are equal. Following
that, different models predict and rank the allocated potential users,
and then select an equal number of target users for marketing
campaigns.

Based on the aforementioned online A/B testing setup, we con-
ducted online experiments on multiple marketing campaigns, fo-
cusing on users who had visited the platform in the past but had
not made any purchases. The evaluation metric is the ROI, which
is the ratio of the revenue contributed by users to the spend mar-
keting budget. Table 4 presents the online experimental results on
the large-scale financial technology platform. For each marketing
campaign, we separately observe the relative improvement in ROI
after 7 days, 14 days, and 30 days. The online experimental re-
sults demonstrated a significant improvement in OptDist across all
marketing campaigns and observation time windows. These find-
ings indicate the effectiveness of OptDist in real-world customer
acquisition scenarios by accurately estimating the CLTV.

5 Conclusion
Accurately predicting CLTV is essential for increasing a company’s
revenue. In this paper, we propose a novel framework, OptDist,
for CLTV prediction. OptDist learns multiple candidate probabilis-
tic distributions in the DLM and adopts a network with Gumbel-
softmax operation to generate exploring weights of each candidate
distribution in DSM. Additionally, we propose an alignment mech-
anism that generates pseudo labels for DSM according to the losses
of SDNs in the DLM and uses them to guide the training of DSM,
thus making the optimization more effective. In this manner, Opt-
Dist decomposes the complex single distribution modeling problem
into several relatively easier-to-learn sub-distribution modeling
problems and selects the optimal sub-distribution for each user.
We conducted comprehensive offline experiments on two public
datasets and an industrial dataset, which demonstrated the supe-
riority of OptDist. Furthermore, we have deployed our OptDist in
real-world applications and conducted online experiments in mul-
tiple marketing campaigns, and the results consistently indicated
the effectiveness of OptDist.
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