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ABSTRACT
Click-through rate (CTR) prediction model usually consists of three

components: embedding table, feature interaction layer, and clas-

sifier. Learning embedding table plays a fundamental role in CTR

prediction from the view of the model performance and memory

usage. The embedding table is a two-dimensional tensor, with its

axes indicating the number of feature values and the embedding di-

mension, respectively. To learn an efficient and effective embedding

table, recent works either assign various embedding dimensions for

feature fields and reduce the number of embeddings respectively

or mask the embedding table parameters. However, all these ex-

isting works cannot get an optimal embedding table. On the one

hand, various embedding dimensions still require a large amount of

memory due to the vast number of features in the dataset. On the

other hand, decreasing the number of embeddings usually suffers

from performance degradation, which is intolerable in CTR predic-

tion. Finally, pruning embedding parameters will lead to a sparse

embedding table, which is hard to be deployed. To this end, we

propose an optimal embedding table learning framework OptEm-

bed, which provides a practical and general method to find an

optimal embedding table for various base CTR models. Specifically,

we propose pruning the redundant embeddings regarding corre-

sponding features’ importance by learnable pruning thresholds.

Furthermore, we consider assigning various embedding dimen-

sions as one single candidate architecture. To efficiently search the

optimal embedding dimensions, we design a uniform embedding

dimension sampling scheme to equally train all candidate archi-

tectures, meaning architecture-related parameters and learnable
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thresholds are trained simultaneously in one supernet. We then pro-

pose an evolution search method based on the supernet to find the

optimal embedding dimensions for each field. Experiments on pub-

lic datasets show that OptEmbed can learn a compact embedding

table which can further improve the model performance.
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1 INTRODUCTION
Click-through rate (CTR) prediction has been a critical task in real-

world commercial recommender systems and online advertising sys-

tems [3, 26]. It aims to predict the probability of a certain user click-

ing a recommended item (e.g. movie, advertisement) [12, 29, 33, 34].

General CTR prediction model architecture consists of embed-

ding table, interaction layer, and classifier as illustrated in Fig.

1 [12, 33, 34, 36]. The typical inputs of CTR models consist of many

categorical features.We term the values of these categorical features

as feature values, which are organized as feature fields. For example,

a feature field gender contains three feature values,male, female and
unknown. These predictive models use the embedding table to map

the categorical feature values into real-valued dense vectors. Then

these embeddings are fed into the feature interaction layer, such

as factorization machine [29], cross network [34], self-attention

layer [33]. The final classifier aggregates the representation vector

to make the prediction.

In the general CTR prediction model architecture, the embedding

table dominates the number of parameters and plays a fundamental
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Figure 1: Overview of general framework of CTRprediction.

role in prediction performance. Therefore, it is critical to obtain

optimal embedding tables that reduce the model size and improve

performance [18, 32]. The embedding table is a two-dimensional

tensor E ∈ 𝑅 |𝑓 |×𝐷
, which maps each feature value to an indexed

row. The first dimension size |𝑓 | thus equals the total number of fea-

ture values, and the second one 𝐷 is the embedding dimension. The

memory cost of the embedding table is 𝑂 ( |𝑓 |𝐷), where 𝑓 mainly

decides the memory usage given |𝑓 | ≫ 𝐷 . When all possible feature

values are fed into the model [12, 15], |𝑓 | becomes a vast number

(up to millions on web-scale applications). This leads to a large

number of embeddings, which contributes to the primary memory

bottleneck within both training and inference [11]. However, the

redundant embedding not only necessitates additional memory cost

but is also detrimental to the model performance [35]. Therefore,

the first requirement for an optimal embedding table is to distin-

guish the redundant embeddings and zero them out before they are

fed into the following layers, as shown in Fig. 1. The embedding

dimension 𝐷 is mostly fixed across all the feature values. Previous

works[18, 43] point out that the over-parameterizing features with

smaller feature cardinalitymay induce overfitting, and features with

larger cardinality need larger dimensions to convey fruitful infor-

mation. Hence, the second requirement for an optimal embedding

table is to assign various embedding dimensions to feature values

as flexible embedding shown in Fig. 1. An alternative to optimize

the embedding table is to mask the embedding parameters directly

[23, 27]. It makes embedding dimension 𝐷 ≥ 0 with discontinuous

parameters, illustrated as sparse embedding in Fig. 1. Neverthe-

less, the sparse embedding table requires storing extra structural

information and additional computation cost in the inference stage,

which is not suitable for hardware in practical [6]. The final require-

ment is to optimize the embedding table without storing additional

structural information on hardware requirements. Given the above

requirements, it is highly desired to prune redundant embeddings

and search embedding dimensions in a unifying way.

Previous work on optimizing the embedding table either treats

embedding reduction and dimensions search separately or gener-

ates sparse embedding. To reduce the number of embeddings, one

natural approach is to design a hash function, which maps the cate-

gorical features to the embedding table index [37, 38, 41]. Since the

embedding table index size is far less than the number of feature

values, this approach optimizes memory usage. However, blindly

mapping different feature values into the same embeddings without

distinguishing the redundant embeddings may lead to performance

degradation, which is intolerable in CTR prediction. On the other

hand, AutoField [35] utilizes the differential architecture search [21]

method to prune redundant feature fields. But this method may

prune some informative feature values while preserving some re-

dundant ones since the feature field is not fine-grained enough to

generate an optimal embedding. To search for flexible embedding

dimension, AutoDim [43] also utilize the differential architecture

search [21] method. However, this method cannot get an optimal

embedding table, as it does not remove redundant features. More-

over, some research optimizes the embedding table in a unifying

way based on embedding pruning [23, 27, 31]. These methods iden-

tify and mask redundant values in embeddings, where embeddings

are pruned when their dimensions are equal to zero. However, these

methods result in a sparse embedding table, which poses challenges

when fitting into modern computation units.

In this paper, we propose a framework to address two main chal-

lenges and learn an optimal embedding table (OptEmbed) that

satisfy all three requirements. First, for the problem of how to
prune the redundant embeddings and search feature fields
embedding dimensions in a unifying way, we transform it into

the problem of identifying the importance of each feature value.

Besides, searching field-wise embedding dimensions can be for-

mulated as an architecture search problem. To this end, inspired

by structural pruning and network architecture search [2, 8], we

introduce learnable pruning thresholds to distinguish informative

embeddings and to allocate the dimensions to those embeddings

in an automated and data-driven manner. Specifically, we mask

redundant embeddings adaptively with thresholds. Meanwhile, we

design a uniform embedding dimension sampling scheme to train

a supernet with the learnable thresholds. Then, We conduct an

evolutionary search based on the supernet with informative em-

beddings to assign optimal field-wise dimensions. To address the

second challenge of how to optimize the embedding table ef-
ficiently, we reparameterize the problem with a threshold vector,

which makes the original problem differentiable and only needs

a few preallocate memory [7]. Moreover, the search space of em-

bedding dimensions is also too huge to explore [43]. Therefore,

we design a one-shot embedding dimension search method to save

search time by decoupling parameter training and dimension search

based on the supernet mentioned above. The experimental results

on three public datasets demonstrate the efficiency and effective-

ness of our proposed framework OptEmbed. We summarize our

major contributions as below:

• This paper firstly proposes the requirements for an optimal em-

bedding table: no redundant embedding, embedding dimension

flexible and hardware friendly. We propose a novel optimization

method called OptEmbed, which improves model performance

and reduces memory usage based on these requirements.

• The proposed OptEmbed optimizes the embedding table in a

unifying way. It can efficiently train a supernet with informative

feature values and the embedding parameters simultaneously.

Moreover, we design a one-shot embedding dimension search

method based on the supernet, which produces the optimal em-

bedding table without sparse embedding.

• The extensive experiments are conducted on three public datasets.

The experimental results demonstrate the effectiveness and effi-

ciency of the proposed framework.

We organize the rest of this paper as follows. In Section 2, we

formulate the CTR prediction problem and three requirements for

the optimal embedding table. In Section 3, we present OptEmbed

to obtain the optimal embedding table efficiently. Section 4 details
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the experiments. In Section 5, we briefly introduce related works.

Finally, we conclude this work in Section 6.

2 PROBLEM DEFINITION
In this section, we formulate how the CTR prediction model output

the prediction result with the concatenation of multiple features

and define the requirements for an optimal embedding table.

2.1 CTR Prediction
We represent the raw inputs as the raw feature vector that concate-

nates 𝑛 feature fields x = [x(1) , x(2) , · · · , x(𝑛) ]. Usually, x(𝑖) is a
one-hot representation, which is very sparse and high-dimensional.

For example, the feature field gender has three unique feature val-
ues, male,female, and unknown, then they can be represented by

three one-hot vectors [1, 0, 0],[0, 1, 0] and [0, 0, 1], respectively. Be-
fore raw feature vectors are fed into the feature interaction layer,

we usually employ embedding table to convert them into low di-

mensional and dense real-value vectors. This can be formulated

as e(𝑖) = E × x(𝑖) , 1 ≤ 𝑖 ≤ 𝑛, where E ∈ R |𝑓 |×𝐷 is the embedding

table, |𝑓 | is the number of feature values and 𝐷 is the size of em-

bedding. Then embeddings are stacked together as a embedding

vector e = [e(1) , e(2) , · · · , e(𝑛) ].
Following learnable embedding table, the feature interaction

layer will be performed based on e in mainstream CTR models.

There are several types of feature interaction in previous study,

e.g. inner product [12]. As discussed in previous work [25], feature

interaction can be defined as based on embeddings:

v𝑝 = 𝑜 (𝑝−1) (𝑜 (𝑝−2) (· · · (𝑜 (1) (e)) · · · )), (1)

where 𝑜 can be a single layer perceptron or cross layer[34]. The

feature interaction can be aggregated together:

𝑦 = 𝜎 (w𝑇 (v(1) ⊕ v(2) ⊕ · · · ⊕ v(𝑛) ) + 𝑏) = F (E × x|W), (2)

where symbol ⊕ denotes the concatenation operation, v(𝑘) is the
output of feature interaction, and W is network parameters except

for embedding table. The cross entropy loss (i.e. log-loss) is adopted

for training the model:

CE(𝑦,𝑦) = 𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦) . (3)

We summarize the final CTR prediction problem as follows:

min

E,W
LCE (D|{E,W}) = − 1

|D|
∑

(x,𝑦) ∈D
CE(𝑦, F (E × x|W)) . (4)

where 𝑦 is the ground truth of user clicks, D is the training dataset.

2.2 Optimal Embedding Table
The original embedding table E ∈ R |𝑓 |×𝐷 is neither effective nor

efficient [23, 35, 36, 43]. An optimal embedding table that satisfies

the following requirements can greatly reduce the model size and

improve performance:

Req. 1. No Redundant Embeddings: The optimal embedding table
should only map informative feature values to embeddings. Feature
value x𝑖 is considered informative if the performance of the model is
degraded when masking its corresponding embedding e𝑖 . Otherwise,
it is deemed to be redundant.

Req. 2. Embedding Dimension Flexible: The optimal embedding
table should assign various embedding dimensions, improving the
performance of the predictive model the most.

Req. 3. Hardware Friendly: The optimal embedding table should
be compatible with the modern parallel-processing hardware (e.g.
GPU) – requiring no additional resources when training and inference.

To fulfill the three requirements above, we decompose the origi-

nal single embedding table E into a series of field-wise embedding

tables E∗ = [E(1) , E(2) , · · · , E(𝑛) ], where E(𝑖) ∈ R |𝑓(𝑖 ) |×𝐷 (𝑖 )
. To sat-

isfy requirement (i), we prune some embeddings related to redun-

dant feature values, which can be formulated as

∑𝑛
𝑖=1 |𝑓(𝑖) | ≤ |𝑓 |.

As to requirements (ii) and (iii), different embedding sizes for each

field-wise embedding tables are allocated. In summary, an optimal

embedding table can be further defined as:

min

E∗,W
LCE (D|{E∗,W}), E∗ = [E(1) , E(2) , · · · , E(𝑛) ],

𝑠 .𝑡 . E(𝑖) ∈ R |𝑓(𝑖 ) |×𝐷 (𝑖 ) ,

𝑛∑
𝑖=1

|𝑓(𝑖) | ≤ |𝑓 |, 𝐷 (𝑖) ≤ 𝐷, ∀𝑖 ≤ 𝑛.
(5)

Notes that previous methods can not satisfy all three require-

ments. We will detail this in Section 3.4.

3 OPTEMBED
In this section, we propose a framework called OptEmbed to learn

the optimal embedding table E∗ defined in Section 2. We rewrite

Eq. 5 into the following by introducing two masks:

min

m𝑒 ,m𝑑 ,E,W
LCE (D|{E∗,W}), E∗ = E ⊙ m𝑒 ⊙ m𝑑 . (6)

Herem𝑑 ∈ {0, 1}𝐷×𝑛
denotes the field-wise dimension mask.m𝑒 ∈

{0, 1} |𝑓 | denotes the embedding mask. |𝑓 | and 𝑛 denote the feature

number and field number. ⊙ denotes element-wise product with

broadcasting. By doing so, we decompose the task of learning the

optimal embedding table E∗ into three parts: (i) train embedding

mask m∗
𝑒 to preserve informative embeddings; (ii) search for field-

wise dimension mask m∗
𝑑
to assign various embedding size to each

field and (iii) re-train the optimal embedding table E∗ under the
constraints of (i) and (ii). The overview of OptEmbed framework

is shown in Fig. 2. Both the embedding mask and dimension mask

are applied to the embedding table. Some of the embeddings are

removed, while others become sparse.

Below, we first illustrate how to determine embedding mask m𝑒

and field-wise dimension maskm𝑑 , respectively. We then introduce

the re-training stage and discuss how OptEmbed compares with

other methods that optimize the architecture of embedding tables

from various aspects.

3.1 Redundant Embedding Pruning
The redundant embedding pruning component determines which

rows of the embedding table are informative and should be included

in the final prediction task. Given that |𝑓 | tends to be a large number,

it is computationally inefficient to assign individual parameters to

each feature marking its importance. Inspired by network pruning

[22, 40], we directly optimize the embedding table E and adaptively

pruning the embeddings via comparing with field-wise threshold,
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Figure 2: The Overview of OptEmbed.

which can be updated by gradient descent. The reparameterization

of the m𝑒 is formulated as follows:

m𝑒 = 𝑆 (𝐿𝛽 (E) − t), (7)

where t is the field-wise threshold vector, 𝐿𝛽 is the 𝛽 norm of

embedding in each field, 𝑆 (·) is the activation function, whichworks
as trainable dynamic mask. We will illustrate three parts in the

following sections in details.

3.1.1 Field-wise Threshold Vector. We introduce a trainable field-

wise vector t ∈ R |𝑓 |
to serve as pruning thresholds for embeddings

in every field. We do not adopt a global threshold because corre-

sponding features from different fields are likely to have different

properties. For instance, the average frequency for the gender field
is expected to be much higher than that for the ID field. Assessing

the importance of features from different fields with a global thresh-

old value would lead to a non-robust and hard-to-train network.

Meanwhile, we do not adopt a feature-wise threshold vector consid-

ering it would significantly increase the number of total parameters

and make it more likely to over-fit.

Figure 3: Relationship between 𝐿1-norm and frequency in
selected fields of Avazu dataset.

3.1.2 𝐿𝛽 norm. It is commonly believed that features with higher

frequency tend to be more important and informative in CTR pre-

diction [39, 41]. To measure the importance of features precisely,

we empirically train a prediction model and investigate the relation

between the frequency of each feature and 𝐿𝛽 norm of the corre-

sponding embedding in each field. Three fields in Avazu dataset
1

are randomly selected as an example; here we set the base model as

FNN [42], 𝐿𝛽 norm as 𝐿1 norm. The results are illustrated in Fig. 3.

Each green dot represents one embedding in the embedding table,

1
http://www.kaggle.com/c/avazu-ctr-prediction

with its x-axis denoting the 𝐿1 norm of the embedding and y-axis

denoting the log frequency of the corresponding feature value. A

fitting curve is also shown in blue to summarize the relationships

between these two variables. As we can observe, with the increment

of feature frequency, the 𝐿1 norm of the corresponding embedding

also grows linearly. As a result, we adopt 𝐿𝛽 norm of corresponding

embeddings as a measurement in our framework [14, 22].

3.1.3 Unit Step Function. We introduce a unit step function 𝑆 (𝑥) as
the activation function to generate a binary mask. Given the field-

wise threshold vector t and unit step function 𝑆 (𝑥), we can formally

generate the embedding mask m𝑒 . For feature 𝑗 corresponding

embedding e𝑗 , its embedding mask m𝑗
𝑒 is given by:

m𝑗
𝑒 = 𝑆 (𝐿𝛽 (e𝑗 ) − t𝑘 𝑗 ) =

{
1, 𝐿𝛽 (e𝑗 ) − t𝑘 𝑗 > 0

0, otherwise
, (8)

where 𝐿𝛽 (·) indicates the 𝐿𝛽 normalization function and 𝑘 𝑗 maps

feature 𝑗 to the corresponding field. With the unit step function

𝑆 (𝑥), we can easily generate binary embedding mask m𝑒 . Then the

embedding table can be formulated as

Ê = E ⊙ m𝑒 = E ⊙ 𝑆 (𝐿𝛽 (E) − t). (9)

The prediction score will be calculated with Ê. However, because
the derivative of step unit function is an impulse function, Eq.9

cannot be directly optimized. To preserve gradients and make the

model trainable, we adopt the long-tail derivation estimator [22]

to replace the gradient 𝑑𝑆 (𝑥)/𝑑𝑥 of the step unit function. The

long-tail derivation estimator can be formulated as

𝑑

𝑑𝑥
𝑆 (𝑥) ≈ 𝐻 (𝑥) =


2 − 4|𝑥 |, |𝑥 | ≤ 0.4

0.4, 0.4 < |𝑥 | ≤ 1

0, otherwise

. (10)

We adopt this derivative long-tail estimator to optimize the field-

wise threshold vector t, so that the gradient would be large when

the 𝐿𝛽 norm and the threshold value are close to each other and

would be 0 when the gap between 𝐿𝛽 norm and threshold value are

large enough. We denote the gradient of actual embedding Ê as 𝑑Ê.
Notes that the gradient of embedding for updating E is

𝑑E = 𝑑Ê ⊙ m𝑒 + 𝑑Ê ⊙ E ⊙ 𝐻 (𝐿𝛽 (E) − t) ⊙ 𝑑𝐿𝛽 (E). (11)

The gradient of embedding is composed of two parts. The first part

𝑑Ê⊙m𝑒 is the performance gradient that improves the performance.

The second part 𝑑Ê⊙E⊙𝐻 (𝐿𝛽 (E) − t) ⊙𝑑𝐿𝛽 (E) is the structure gra-
dient that removes redundant embeddings. As the final embedding

is jointly influenced by both the performance and structure, OptEm-

bed can recover some embeddings. Specifically, once an embedding

is accidentally removed, the performance gradient becomes zero

because the embedding is zeroed-out. However, the embedding still

receives the structure gradient. So the pruned embedding may be

recovered again if the gap between 𝐿𝛽 norm and threshold are not

too large (i.e. smaller than one in this case).

It is worth mentioning that the 𝛽 in 𝐿𝛽 norm needs to be carefully

selected. With 𝐿𝛽 (e) = (∑ 𝑒
𝛽

𝑖
)1/𝛽 for embedding e, we can get

derivation for particular element:

𝑑𝐿𝛽

𝑑𝑒𝑖
= (

∑
𝑒
𝛽

𝑖
)1/𝛽−1 · 𝑒𝛽−1

𝑖
. (12)
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Due to the first term (∑ 𝑒
𝛽

𝑖
)1/𝛽−1, the gradient of 𝑒𝑖 will be influ-

enced by all elements from embedding e unless 𝛽 = 1. Therefore

we select 𝛽 = 1 for OptEmbed hereafter to get rid of the influence.

3.1.4 Sparse Regularization Term. To remove more redundant em-

beddings, higher thresholds are encouraged. To achieve this, we

explicitly add an exponential regularization term 𝐿𝑠 to the logloss

that penalizes low threshold values. For the field-wise threshold

t ∈ R𝑛 , the exponential regularization term is

L𝑠 =

𝑛∑
𝑖=1

exp(−𝑡𝑖 ). (13)

Notice that the regularization term gradually decreases to zero

as 𝑥 increases. Hence, the final objective in this stage becomes

min

m𝑒 ,E,W
LCE (D|{Ê,W}) + 𝛼L𝑠 , Ê = E ⊙ m𝑒 . (14)

Here𝛼 is the scaling coefficient for the sparse regularization term,

controlling how many embeddings are pruned. With higher 𝛼 , L𝑠

tends to increase the threshold t, which makes it easier to prune

redundant embeddings. However, once 𝛼 becomes too large, it may

accidentally remove certain informative embeddings, leading to the

increase of the cross-entropy loss LCE. Therefore, our method can

dynamically remove redundant embeddings, leading to a proper

balance between model performance and size.

3.2 Embedding Dimension Search
The embedding dimension search component aims to assign various

optimal dimensions for all fields. By viewing a group of field-wise

dimension masks as one neural network architecture, we design an

efficient neural architecture search method to search for optimal

dimension masks efficiently in this section.

3.2.1 One-shot NAS Problem. Because the optimal embedding ta-

ble should satisfy Req. 2 and 3, the dimensionality set in our method,

formed by all candidate embedding dimensions, can be formulated

as S𝑒 = {1, · · · , 𝐷 − 1, 𝐷}. Notice that the complexity of this search

space is 𝑂 (𝐷𝑛), which is impossible to search all the possible ar-

chitectures in the search space exhaustively. On the other hand, to

evaluate architecture, we need to trainm𝑒 and network parameters

again, which costs a lot of computation resources. To efficiently

search for the optimal embedding dimension mask, we hence re-

formulate the dimension search as a one-shot NAS problem [1, 13]:

m∗
𝑑
= argmin

m𝑑 ∈S𝑒

LCE (D𝑣𝑎𝑙 |{Ê𝑠 ⊙ m𝑑 , Ŵ𝑠 }),

𝑠 .𝑡 . {Ê𝑠 , Ŵ𝑠 } = argmin

{E𝑠 ,W𝑠 }∈Ω
Em𝑑∼Γ (S𝑒 )LCE (D|{E𝑠 ⊙ m𝑑 ,W𝑠 }),

(15)

where S𝑒 denotes the search space, Γ(S𝑒 ) is the prior distribution
of the search space, {Ê𝑠 , Ŵ𝑠 } is the best supernet parameter and

Ω denotes the parameter space of the supernet. By decoupling the

dependency between training embedding and dimension search,

we no longer need to train a sub-architecture from scratch, which

reduces computation cost significantly.

3.2.2 Supernet Training. Following Eq. 15, we construct the super-

net embedding table E𝑠 with ordinal parameter sharing [36], which

is efficient to reuse most of parameters. In our method with search

space S𝑒 = {1, · · · , 𝐷 − 1, 𝐷}, the supernet is constructed with

maximum dimension 𝐷 . With no prior knowledge of Γ, we then
assume Γ as a uniform distribution. Such an assumption proves to

be empirically good enough and efficient to apply [13]. Specially,

given 𝑑 ∼ Uniform(1, 𝐷), the first 𝑑 elements of m𝑑 are ones and

the rest are zeros. Different from other methods [23, 27],m𝑑 induce

flexible embedding, which is hardware-friendly, instead of sparse

embedding, which requires a lot of structure information.

Moreover, the Ê retains various embeddings during training both

m𝑒 and embedding parameters, which affects the supernet directly.

To train the supernet adapting to m𝑒 and reduce the total training

time further, we conduct the supernet training and redundant em-

bedding pruning in a unifying way by introducing E𝑠 = E ⊙ m𝑒 .

Finally, we can formulate supernet training as:

min

m𝑒 ,E,W
Em𝑑∼Uniform(S𝑒 )LCE (D|{Ê,W}) + 𝛼L𝑠 ,

Ê = E𝑠 ⊙ m𝑑 = E ⊙ m𝑒 ⊙ m𝑑 .

(16)

3.2.3 Search Strategy. After training the supernet {E∗𝑠 ,W∗
s } from

Eq. 16, we present an evolutionary search for the optimal dimension

mask m∗
𝑑
. In the beginning, all candidates are randomly generated.

At every epoch, each candidate dimension maskm𝑑 is evaluated on

the validation set D𝑣𝑎𝑙 by inheriting parameters from the supernet.

This part is relatively efficient as no training is involved. After the

evaluation, the Top-k candidates are preserved for crossover and

mutation operation to generate the candidates for the next epoch.

For crossover, two randomly selected candidates are crossed to

produce a new one by selecting a random point where the parents’

parts exchange happens. Fig. 4(b) details an example where the blue

parts of the two candidates are crossed. For mutation, a randomly

selected candidate mutates its choice at each position with the

given mutation probability 𝑝𝑟𝑜𝑏. An example is illustrated in Fig.

4(a) where the blue point is a random mutation. Crossover and

mutation are repeated to generate enough new candidates given

the corresponding number 𝑛𝑐 and 𝑛𝑚 . After𝑇 epoch, we output the

best-performed candidate dimensionmask as the optimal dimension

mask m∗
𝑑
. This process is shown in Algorithm 1 in line 7-17.

(a) Mutation (b) Crossover

Figure 4: Operations in evolutionary search.

3.3 Parameter Re-training
During the supernet training, we map all raw features into em-

beddings. Thus to eliminate the influence of these embeddings, a

re-training stage is desired to train the model with only optimal

number of embeddings and embedding dimensions. The embed-

ding mask m∗
𝑒 and the field-wise dimension mask m∗

𝑑
are obtained

followed Eq. 16. In the re-training stage, the objective becomes

argminE,WLCE (D|{E ⊙ m∗
𝑒 ⊙ m∗

𝑑
,W}) . (17)

In summary, the overall process of OptEmbed can be summarized

as Algorithm 1.
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Algorithm 1 The OptEmbed Algorithm

Require: training dataset D, validation dataset D𝑣𝑎𝑙

Ensure: optimal embedding table E∗ and model parameters W∗

1: ## Supernet Training and Embedding Pruning ##
2: while not converge do
3: Sample a mini-batch from the training dataset

4: {Ê𝑠 , Ŵ𝑠 }, m𝑒 = SupernetTrain(D) ⊲ Eq. 16

5: end while
6: m∗

𝑒 = GetBestPerform({m𝑒 })
7: ## Dimension Mask Searching ##
8: 𝜏 = 0; 𝑃𝜏 = Initialize_population(𝑛𝑚 + 𝑛𝑐 ); Topk = ∅;
9: while 𝜏 < 𝑇 do
10: AUC𝜏 = Inference(Ê𝑠 , Ŵ𝑠 , D𝑣𝑎𝑙 , 𝑃𝜏 );

11: Topk = Update_Topk(Topk, 𝑃𝜏 , AUC𝜏 );

12: 𝑃𝑐𝜏 = Crossover(Topk, 𝑛𝑐 );

13: 𝑃𝑚𝜏 = Mutation(Topk, 𝑛𝑚 , 𝑝𝑟𝑜𝑏);

14: 𝑃𝜏+1 = 𝑃𝑚𝜏 ∪ 𝑃𝑐𝜏 ;

15: 𝜏 = 𝜏 + 1;

16: end while
17: m∗

𝑑
= GetBestCand(𝑃𝜏 ) ⊲ Eq. 15

18: ## Re-training##
19: Retrain {E∗,W∗} given m∗

𝑒 and m∗
𝑑

⊲ Eq. 17

3.4 Method Discussion
The combination of pruning redundant embeddings and embed-

ding dimension search makes our OptEmbed approach efficient

and effective. Table 1 performs a comprehensive comparison of our

approach with others that optimize embedding table on whether

they satisfied the Req. 1, 2 and 3. Some methods [5, 9, 18, 36, 43]

search optimal dimension for embedding table from different gran-

ularity: feature-wise (usually grouped by feature value frequency)

or field-wise. Another method [32] uses hashing technique to re-

duce the number of embeddings in the embedding table. The other

methods [23, 31] utilize pruning techniques [8, 22] to learn the

sparse embedding table directly, which is hard to compatible with

the hardware. OptEmbed method is the only method that satisfies

Req. 1, 2 and 3. The rest of the method tends to violate one or two

requirements.

Table 1: Comparison of embedding learning approaches.

Approach R1: N.R.F. R2: E.D.F. R3: H.F.

MDE [9] % ! !

DNIS [5] % ! !

AutoDim [43] % ! !

AutoField [35] ! % !

QR [32] ! % !

PEP [23] ! ! %

OptEmbed ! ! !
N.R.F, E.D.F. and H.F. are abbreviations for No Redundant Feature, Embedding

Dimension Flexible and Hardwar Friendly.

4 EXPERIMENT
We design experiments to answer the following research questions:

• RQ1: Could OptEmbed achieve superior performance compared

with mainstream CTR prediction models and other algorithms

that optimize the embedding table?

• RQ2: How does each component of OptEmbed contribute to the

final result?

• RQ3: What is the impact of the re-training stage in OptEmbed

on the final result?

• RQ4: How efficient is OptEmbed compared with SOTA hand-

crafted models and other algorithms that optimize the embedding

table?

• RQ5: Does OptEmbed output the optimal embedding table?

4.1 Experiment Setup
4.1.1 Datasets. We conduct our experiments on three public datasets.

In all following dataset, we randomly split them into 8 : 1 : 1 as the

training set, validation set, and test set respectively.

Criteo2 dataset consists of ad click data over a week. It con-

sists of 26 categorical feature fields and 13 numerical feature fields.

We follow the winner solution of the Criteo contest to discretize

each numeric value 𝑥 to ⌊log2 (𝑥)⌋, if 𝑥 > 2; 𝑥 = 1 otherwise. Fol-

lowing the best practice [44], we replace infrequent categorical

features with a default "OOV" (i.e. out-of-vocabulary) token, with

min_count=2.

Avazu3 dataset contains 10 days of click logs. It has 24 fields

with categorical features, including instance id, app id, device id, etc.

Following the best practice [44], we remove the instance id field and

transform the timestamp field into three new fields: hour, weekday

and is_weekend. We replace infrequent categorical features with

the "OOV" token, with min_count=2.

KDD124 dataset contains training instances derived from search

session logs. It has 11 categorical fields, and the click field is the

number of times the user clicks the ad. We replace infrequent fea-

tures with an "OOV" token, with min_count=10.

4.1.2 Metrics. Following the previous works [12, 28, 42], we adopt
the commonly used evaluation metric in CTR prediction commu-

nity: AUC (Area Under ROC) and Log loss (cross-entropy). Notes
that in CTR prediction task, 0.1 % AUC improvement is considered

significant [35, 43]. Besides, we also record the sparsity ratio of

the embedding table, the inference time per batch and the train-
ing time of models to measure efficiency. The sparsity ratio is

calculated as follows:

Sparsity = 1 − #Remaining Params

|𝑓 | × 𝐷
. (18)

4.1.3 Baseline Models. We compare the proposed method OptEm-

bed with the following embedding architecture search methods:

(i) AutoDim [43]: This baseline utilizes neural architecture search

techniques[21] to select feasible embedding dimensions from a set

of pre-defined search space. (ii) AutoField [35]: This baseline uti-

lizes neural architecture search techniques [21] to select the essen-

tial feature fields. (iii) QR [32]: This baseline utilizes the Quotient-

Remainder hashing trick to reduce the number of features explicitly.

(iv) PEP [23]: This baseline adopts trainable thresholds to remove

2
https://www.kaggle.com/c/criteo-display-ad-challenge

3
http://www.kaggle.com/c/avazu-ctr-prediction

4
http://www.kddcup2012.org/c/kddcup2012-track2/data

1404



OptEmbed: Learning Optimal Embedding Table for Click-through Rate Prediction CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 2: Overall Performance Comparison.

Dataset

DeepFM DCN FNN IPNN

AUC Logloss Sparsity AUC Logloss Sparsity AUC Logloss Sparsity AUC Logloss Sparsity

C
r
i
t
e
o

Original 0.8104 0.4409 - 0.8106 0.4408 - 0.8110 0.4404 - 0.8113 0.4401 -

AutoDim 0.8093 0.4420 0.8642 0.8096 0.4418 0.7917 0.8104 0.4410 0.7187 0.8103 0.4411 0.7179
AutoField 0.8101 0.4412 0.0009 0.8108 0.4405 0.4108 0.8108 0.4406 0.6221 0.8111 0.4403 0.3941

QR 0.8084 0.4444 0.5000 0.8103 0.4411 0.5000 0.8105 0.4408 0.5000 0.8102 0.4411 0.5000

PEP 0.7980 0.4541 0.5010 0.8110 0.4404 0.5802 0.8108 0.4406 0.5802 0.8111 0.4402 0.5607

OptEmbed 0.8105 0.4409 0.9684 0.8113 0.4402 0.8534 0.8114 0.4400 0.6710 0.8114 0.4401 0.7122

A
v
a
z
u

Original 0.7884 0.3751 - 0.7894 0.3748 - 0.7896 0.3748 - 0.7898 0.3745 -

AutoDim 0.7843 0.3779 0.6936 0.7893 0.3744 0.5013 0.7894 0.3743 0.5017 0.7894 0.3743 0.3892

AutoField 0.7866 0.3762 0.0020 0.7887 0.3748 0.0001 0.7892 0.3748 0.0001 0.7897 0.3744 0.0001

QR 0.7762 0.3821 0.5000 0.7868 0.3766 0.5000 0.7857 0.3769 0.5000 0.7849 0.3781 0.5000
PEP 0.7877 0.3754 0.4126 0.7896 0.3743 0.3016 0.7894 0.3744 0.3016 0.7897 0.3742 0.3016

OptEmbed 0.7888∗ 0.3750∗ 0.3927 0.7901∗ 0.3740 0.6840 0.7902∗ 0.3744 0.5563 0.7902 0.3740∗ 0.4693

K
D
D
1
2

Original 0.7962 0.1532 - 0.8010 0.1522 - 0.8008 0.1522 - 0.8007 0.1522 -

AutoDim 0.7886 0.1550 0.0029 0.8016 0.1520 0.1904 0.8012 0.1522 0.1669 0.8013 0.1521 0.2286

AutoField 0.7953 0.1534 0.0038 0.8011 0.1525 0.0000 0.8006 0.1522 0.0000 0.8006 0.1522 0.0038

QR 0.7913 0.1544 0.5000 0.7925 0.1541 0.5000 0.7938 0.1538 0.5000 0.7928 0.1540 0.5000
PEP 0.7957 0.1533 0.1001 0.7992 0.1525 0.1003 0.7984 0.1527 0.1003 0.7957 0.1535 0.1003

OptEmbed 0.7971∗ 0.1530∗ 0.6183 0.8021∗ 0.1519 0.4715 0.8027∗ 0.1522 0.5105 0.8028∗ 0.1521 0.4154

Here ∗ denotes statistically significant improvement (measured by a two-sided t-test with p-value < 0.05) over the best baseline.

redundant elements in the embedding table. We apply the above

baselines and OptEmbed method over the following well-known

models: DeepFM [12], DCN [34], FNN [42], and IPNN [28].

4.1.4 Implementation Details. In this section, we provide the im-

plementation details. For OptEmbed, (i) General hyper-params: We

set the embedding dimension as 64 and batch size as 2048. For the

MLP layer, we use three fully-connected layers of size [1024, 512,

256]. Following previous work [28], Adam optimizer, Batch Nor-

malization [16] and Xavier initialization [10] are adopted. We select

the optimal learning ratio from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5} and 𝑙2
regularization from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6}. (ii) fea-

ture mask hyper-params: we select the optimal threshold learning

ratio lrt from {1e-2, 1e-3, 1e-4} and threshold regularization 𝛼 from

{1e-4, 3e-5, 1e-5, 3e-6, 1e-6}. (iii) embedding mask hyper-params:

we adopt the same hyper-parameters from previous work[13]. For

all the dimension search experiments, we empirically set mutation

number 𝑛𝑚 = 10, crossover number 𝑛𝑐 = 10, max iteration 𝑇 = 30

and mutation probability 𝑝𝑟𝑜𝑏 = 0.1. During the re-training phase,

we reuse the optimal learning ratio and 𝑙2 regularization. For Au-

toDim, AutoField and PEP, we select the optimal hyper-parameter

from the same hyper-parameter domain of OptEmbed.

Our implementation
5
is based on a public Pytorch library for

CTR prediction
6
. For other comparison methods, we reuse the

official implementation for the PEP
7
[23] and QR

8
[32] methods.

Due to the lack of available implementation for the AutoDim[43]

and AutoField[35] method, we re-implement them based on the

details provided by the authors.

4.2 Overall Performace (RQ1)
The overall performance of our OptEmbed and other baselines on

four different models using three datasets are reported in Table 2.

We summarize our observations below.

5
https://github.com/fuyuanlyu/OptEmbed

6
https://github.com/rixwew/pytorch-fm

7
https://github.com/ssui-liu/learnable-embed-sizes-for-RecSys

8
https://github.com/facebookresearch/dlrm

First, our OptEmbed is effective and efficient compared with

the original model and other baselines. OptEmbed can achieve

higher AUC with fewer parameters. However, the benefit brought

by OptEmbed differs on various datasets. On Criteo, the benefit

tends to be memory reduction. OptEmbed is able to reduce 67% ∼
97% parameters with improvement not considered sigificant sta-

tistically. On KDD12 and Avazu datasets, the benefit tends to be

both performance boosting and memory reduction. OptEmbed can

significantly increase the AUC by up to 0.15% compared with the

original model while saving roughly ∼50% of the parameters.

Secondly, among all baselines, PEP is the most similar to OptEm-

bed. It also tends to be the best-performed baseline on Criteo and

Avazu datasets. However, it might be surpassed by AutoField and

AutoDim on KDD12. Its inconsistency highlights the necessity

of OptEmbed framework. Moreover, the searching phase of PEP

will only stop once the embedding table reaches a predetermined

sparsity ratio, completely neglecting the model performance. Such

stopping criteria may result in a sub-optimal embedding table.

Finally, other baselines tend to behave differently under differ-

ent cases. Without considering the effect of redundant features,

AutoDim performs well under certain cases but may result in a

significant performance decrease sometime. On the other hand,

AutoField often results in low sparsity as its granularity is too large.

The performance degrade brought by QR is usually higher than

other baselines. This might be related to its hashing trick, as it

blindly forces different features to merge into one without consid-

ering the performance of its embedding.

4.3 Ablation on Different Components(RQ2)
In this section, we discuss the influence of different components of

OptEmbed. Here we adopt two variants of OptEmbed: OptEmbed-E

for only using the embedding pruning component and OptEmbed-

D for only using the dimension search component. The results

are shown in Table 3. As we can observe, embedding pruning and

dimension search components behave differently given various
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Table 3: Performance Comparison for Component Analysis.

Basic

Metrics

Metrics

Model AUC Logloss Sparsity

C
r
i
t
e
o

DeepFM

Original 0.8104 0.4409 -

OptEmbed-E 0.8104 0.4410 0.6267

OptEmbed-D 0.8103 0.4410 0.5547

OptEmbed 0.8105 0.4409 0.9684

DCN

Original 0.8106 0.4408 -

OptEmbed-E 0.8110 0.4404 0.6111

OptEmbed-D 0.8110 0.4403 0.7192

OptEmbed 0.8113 0.4402 0.8534

A
v
a
z
u

DeepFM

Original 0.7884 0.3751 -

OptEmbed-E 0.7884 0.3752 0.0000

OptEmbed-D 0.7888 0.3750 0.3927

OptEmbed 0.7888 0.3750 0.3927

DCN

Original 0.7894 0.3748 -

OptEmbed-E 0.7895 0.3746 0.0024

OptEmbed-D 0.7900 0.3740 0.5044

OptEmbed 0.7900 0.3743 0.6840

datasets. On the Criteo dataset, both the components reduce the em-

bedding parameters. On DCN model, OptEmbed-E and OptEmbed-

D can slightly improve model performance. OptEmbed combines

these two components to obtain an optimal embedding table with

fewer parameters and higher model performance. On the Avazu

dataset, OptEmbed-E makes no significant difference compared

with original model. This may be due to the overwhelming major-

ity of feature values in the Avazu dataset being ID features, which

tend to be informative in prediction. Hence, the optimal embedding

table obtained by OptEmbed and OptEmbed-D usually is similar

to each other. In all, these two components should be utilized in a

unifying way to obtain the optimal embedding table considering

differences between datasets.

4.4 Ablation on Re-training(RQ3)
We investigate the necessity of Section 3.3 upon the result of the

DCNmodel over both Criteo and Avazu datasets. Results are shown

in Table 4. We compare the performance of OptEmbed under dif-

ferent settings with and without re-training. It can be observed

that re-training can generally improve the performance. Without

re-training, the neural network will inherit the sub-optimal model

parameters from the supernet, which is trained for predicting the

performance of all possible field-wise dimension masks. Re-training

makes the model parameter optimal under the constraint of the

embedding mask and field-wise dimension mask.

Table 4: Ablation About Re-training Stage.

Dataset Criteo Avazu KDD12

Retrain w. w.o. w. w.o. w. w.o.

AUC 0.8113 0.8110 0.7900 0.7895 0.8021 0.8005

Logloss 0.4402 0.4404 0.3743 0.3749 0.1523 0.1526

w. stands for with re-training. w.o. stands for without re-training.

4.5 Efficiency Analysis(RQ4)
In addition to the model effectiveness, training and inference effi-

ciency are also vital when deploying the CTR prediction model into

reality. In this section, we investigate the efficiency of OptEmbed

from both the time and space aspects.

4.5.1 Time Complexity. We illustrate the total training and infer-

ence time of DeepFM model trained on all three datasets in Fig. 5.

Here we define the total training time as the sum of mask searching

time(the time required to obtain the embedding and/or dimension

mask given different methods) and re-training time(the time for

re-training the parameters under the constraint of the embedding

and/or dimension mask).

For the total training time in Fig. 5(a), we can observe that QR

and AutoField tend to have faster speeds than other methods. For

QR, no network architecture search is involved. It also has a smaller

embedding table, leading to a faster training speed per epoch. Aut-

oField has a smaller search space than other baselines since it only

contains the feature field. Surprisingly, the total training time of

original model is not always the fastest. This is because original

model may take more epochs to converge. OptEmbed is faster than

PEP and AutoDim because they have respectively slower conver-

gence speeds during the mask searching and re-training phase.

The inference time is crucial when deploying the model in reality.

As shown in Fig. 5(b), OptEmbed achieves the least inference time.

This is because the final embedding table obtained by OptEmbed

has the least parameters. PEP requires the longest inference time,

even longer than original model, because its embedding table tends

to be sparse and hardware-unfriendly. Note that it is inevitable to

cost additional time to search masks for OptEmbed. However, the

cost is worth considering the performance increase and inference

time saving, which are more important in practice.

(a) Total Training Time (h) (b) Inference Time (ms)

Figure 5: A case study about the candidate setting.

4.5.2 Space Complexity. We plot the parameter-AUC curve of the

DeepFM model on both Criteo and KDD12 datasets in Fig. 6, which

reflects the relationship between the space complexity of the embed-

ding table and model performance. There are multiple PEP points

as it requires predetermined sparsity ratios as stopping criteria. So

we can easily control the final sparsity ratio. AutoDim, AutoField

and OptEmbed primarily aim to improve model performance. How-

ever, there is no guarantee of the final sparsity ratio. Hence we

only plot one point for each method. From Fig. 6 we can make the

following observations: (i) OptEmbed outperforms other baselines

with the highest AUC score and the smallest embedding size. (ii)

Model performance of PEP tends to degrade with the decrease of

embedding parameters. (iii) AutoDim and AutoField only optimize

the embedding table along one axis. Hence they do not have sta-

ble performance among datasets. They perform well on the Criteo

dataset. However, they are surpassed by PEP on the KDD12 dataset.
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(a) Criteo (b) KDD12

Figure 6: Visualization of efficiency-effectiveness trade-off
for different datasets. The closer to the top-left the better.

4.6 Case Study(RQ5)
This section uses a case study to investigate the optimal embedding

table obtained from OptEmbed. We select the embedding table of

FNN model trained on Avazu dataset as an example and exclude

all anonymous feature fields. Criteo and KDD12 datasets are not

selected because all fields are anonymous. In Fig. 7, we plot total

parameters, embedding numbers, dimensions and normalize them

with corresponding values from original model, respectively. We

can make the following observations. First, each field’s optimal

dimensions and remaining feature values vary from one to another.

This highlights the necessity for OptEmbed. Second, id-like features

(like site_id, app_id, device_id) tend to have higher values than

others. Such an observation is consistent with human intuition

as the id-like features are the core of collaborative filtering-based

recommender system. Third, it is surprising to find out that no

embedding is assigned for theweekday and is_weekday fields. These
two fields are manually created following the best practice [44].

However, their contained information is more likely to be covered

by the hour field. Such an observation shows the limit of human-

defined feature selection methods.

Figure 7: Case Study of OptEmbed output on Avazu

5 RELATEDWORK
We discuss how our work is situated in two research topics: CTR

prediction and embedding table optimization. Many machine learn-

ing models have been developed for CTR prediction [3, 29, 30].

Due to the powerful learning ability, the mainstream CTR pre-

diction research is dominated by deep learning models [26, 44].

Wide&Deep [4] and FNN [42] introduce an embedding table to

transform the raw inputs and an MLP layer to model high-level

representations. DeepFM [12], DCN [34] and IPNN [28] rely on var-

ious feature interaction layers to improve performance. Increasing

research focus on how to model complex feature interaction [19, 20,

24]. With AutoML technique, AutoFIS [20] and AutoFeature [19]

search for feature interaction instead of modeling with implicit

layer. OptEmbed is perpendicular to all these researches by provid-

ing an optimal embedidng table for various base models.

Studies on optimizing embedding tables can mainly be catego-

rized into reducing memory usage, searching embedding dimen-

sions, and pruning redundant values. Hash embedding [37] designs

a hash method to reduce the embedding table size. Double hash [41]

adopts the double hash method for one feature value to reduce the

collision in hashing method. Q-R trick [32] is also introduced to

conquer the collision problem. Some quantized techniques [17, 18]

are also borrowed for compressing the embedding table. To search

field-wise embedding dimension, NAS has been utilized automat-

ically based on well-defined search space [5, 9, 43]. NAS has also

been utilized to search informative feature field [35] automatically.

AutoIAS [36] introduces a one-shot search for both embedding di-

mension and architecture. Pruning redundant values in embedding

tables attracted more attention recently. PEP [23] designs a soft

threshold method to filter out low magnitude values in the embed-

ding table with a predetermined sparsity ratio. DeepLight [6] prune

embedding table and other components on a pre-train network.

The single-shot [27] pruning method is also used to prune the em-

bedding table carefully. This paper proposes three requirements for

an optimal embedding table in Req. 1, 2 and 3, and make a thorough

comparison with these works. To the best of our knowledge, we

are the first to design an optimal embedding framework satisfying

three requirements for CTR prediction.

6 CONCLUSION
This paper first proposes the requirements for an optimal embed-

ding table. Based on these requirements, a novel, model-agnostic

framework OptEmbed is proposed. OptEmbed optimizes the em-

bedding table in a unifying way. It is capable of combining the

supernet parameter training with redundant embedding pruning.

A one-shot embedding search method is proposed based on the

supernet to efficiently find optimal dimensions for different fields

and obtain the optimal embedding table. Extensive experiments on

three large-scale datasets demonstrate the superiority of OptEmbed

in terms of both model performance and model size reduction. Sev-

eral ablation studies demonstrate that basic models require optimal

embedding tables on various datasets. Moreover, we also interpret

the obtained result on feature fields, highlighting that our method

learns the optimal embedding table.
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