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Abstract

The evolution of previous Click-Through Rate (CTR) models has

mainly been driven by proposing complex components, whether

shallow or deep, that are adept at modeling feature interactions.

However, there has been less focus on improving fusion design.

Instead, two naive solutions, stacked and parallel fusion, are com-

monly used. Both solutions rely on pre-determined fusion connec-

tions and fixed fusion operations. It has been repetitively observed

that changes in fusion design may result in different performances,

highlighting the critical role that fusion plays in CTRmodels. While

there have been attempts to refine these basic fusion strategies,

these efforts have often been constrained to specific settings or

dependent on specific components. Neural architecture search has

also been introduced to partially deal with fusion design, but it

comes with limitations. The complexity of the search space can

lead to inefficient and ineffective results. To bridge this gap, we

introduce OptFusion, a method that automates the learning of fu-

sion, encompassing both the connection learning and the operation

selection. We have proposed a one-shot learning algorithm tack-

ling these tasks concurrently. Our experiments are conducted over

three large-scale datasets. Extensive experiments prove both the

effectiveness and efficiency of OptFusion in improving CTR model

performance. Our code implementation is available here1.
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1 Introduction

Click-through rate (CTR) prediction is a vital task for commercial

recommender systems and online advertising platforms, as it seeks

to predict the likelihood that a user will click on a recommended

item, such as a movie or advertisement [2, 29]. As deep learning-

based CTR models have advanced, researchers have developed

various model architectures [5, 14, 26, 36, 37, 43] to better capture

feature interactions and enhance prediction performance. These

deep CTR models employ a combination of explicit and implicit

components to represent feature interactions. Shallow components,

including inner products [26], cross layer [36], and Factorization

Machines (FM) [5, 28], are used to model these interactions explic-

itly. Concurrently, deep components like multi-layer perceptrons

(MLP) [43] and Self-attention layer [32] implicitly capture the com-

plexity of feature interaction. With the improved deep and shallow

components, deep CTR models can model feature interactions more

effectively, leading to better prediction accuracy.

Despite advances in CTR prediction through the enhancement of

deep and shallow components, the design of fusion mechanisms has

not been extensively studied. Fusion design is crucial as it involves
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Figure 1: (a) Illustration figure about two mainstream fusion designs in deep CTR models. (b) The framework of OptFusion,

which consists of one embedding component, 𝑛 cross components, 𝑛 deep components, and one output component as the

candidate set of fusion connection search. The selection of components is formed as a Directed Acyclic Graph (DAG). Fusion

operation selection is also designed to fuse representations from lower-level components.

aggregating representations from different model components. Pre-

vious works [26, 36], as illustrated in Figure 1, have predominantly

relied on two naive fusion designs: stacked and parallel. In the

stacked design, shallow components are typically placed before

deep components and are trained sequentially [7, 15, 26]. For exam-

ple, as depicted in Figure 1 (a), IPNN [26] uses the inner product as a

shallow component, concatenating its output with original embed-

dings before feeding them into deep components. Conversely, the

parallel design involves the joint training of shallow and deep com-

ponents. Models like DCN [36] use concatenation for fusion, while

others, such as DeepFM [5] and Wide&Deep [4], employ addition

to combine outputs from both components [4, 14, 32]. In summary,

these two naive fusion designs rely on pre-defined fusion connec-

tions and fixed fusion operations to fuse representations from

both deep and shallow components. However, variations in fusion

design can lead to substantial differences in performance across

different datasets. For instance, DCNv2 [37] with a parallel design

may outperform its stacked counterpart on the MovieLens dataset

while underperforming on the Criteo dataset. This inconsistent per-

formance among different fusion designs across various datasets

is also observed in MaskNet [38]. These findings underscore the

critical role of fusion in CTR predictions.

Attempts have been made to refine the above-mentioned fusion

designs. EDCN [3], for instance, introduces a manually crafted com-

plex fusion design that incorporates additional fusion connections

and sophisticated fusion operations. Despite using the same com-

ponents as its predecessor DCN [36], EDCN achieves significant

improvement in performance. FinalMLP [24] suggests the use of

Multi-Head Bilinear Fusion Operations as a more effective means of

integrating representations, outperforming naive fusion operations

such as concatenation or addition. These examples demonstrate

the potential of fusion design in significant improvements. How-

ever, these proposed solutions [3, 24] typically address the fusion

learning problem under specific settings or depending on specific

modules, failing to demonstrate the potential of fusion learning ex-

plicitly. A more general and adaptable approach to fusion learning

remains a compelling challenge.

Other researchers have explored using neural architecture search

(NAS) within CTR models to deal with fusion design challenges

by defining a broader search space [31, 42]. AutoCTR [31] employs

an evolutionary approach to simultaneously search for the opti-

mal component type, raw feature input, fusion connections, and

component-specific hyperparameters. However, this approach in-

curs a considerable training cost since each candidate architecture

must be trained separately during the search phase. NASRec [42]

takes a different approach by expanding the search space even fur-

ther for better utility while leveraging weight-sharing techniques

to mitigate the training cost during the search process. Despite

these innovations, searching for fusion design in conjunction with

other model structures, such as component types, within such a

vast search space can make it much harder to obtain an optimal

result. In contrast, our research focuses solely on one of the critical

aspects: fusion learning. By narrowing down the search space, bet-

ter results and faster convergence speed can be achieved. The issues

mentioned above highlight the necessity for a comprehensive yet

lightweight approach to fusion learning that simultaneously selects

both fusion connections and operations.

To address these challenges, we introduce OptFusion, an auto-

mated fusion learning framework for deep CTR prediction. OptFu-

sion aims to explore how fusion, both in terms of connections and

operations, can impact CTR predictions and automatically identify

the most suitable fusion design. We propose a unified search space

specifically tailored to the fusion learning process with shallow

and deep components. This design allows each component to be

connected to its predecessors. Such a design effectively focuses the

search space on fusion learning and facilitates more efficient ex-

ploration compared to neural architecture search methods in CTR

models. Drawing inspiration from previous work [30], we propose

a one-shot learning algorithm that concurrently learns fusion con-

nections and selects fusion operations. This algorithm considers
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the entanglement and mutual influence between fusion connec-

tions and operations, leading to better selection results. Through

rigorous evaluation on three widely-used benchmarks, we empir-

ically demonstrate the effectiveness and efficiency of OptFusion.

Additionally, our ablation studies have shown the orthogonality of

OptFusion when combined with various components. We summa-

rize our contributions as follows:

• We investigate the importance of fusion, both connections and

operations. A novel CTR fusion learning framework, namely Opt-

Fusion, is proposed. OptFusion can automatically learn suitable

fusions in CTR models, containing both connection learning and

operation selection.

• To better explore the proposed fusion space, a one-shot learn-

ing algorithm that simultaneously selects fusion connection and

operation is proposed. Such a one-shot learning algorithm can

better explore the search space due to entanglement between

fusion operation and connection.

• We empirically evaluate OptFusion’s efficiency and effectiveness

on three large-scale datasets.

2 Preliminary

In this section, we first formulate the CTR prediction problem

in Section 2.1. Then, we introduce the fusion learning for CTR

prediction in Section 2.2.

2.1 CTR Prediction

CTR prediction is a classic supervised binary classification prob-

lem [29]. Given a dataset D = {(x, 𝑦)} consisting of 𝑁 = |D|

instances with each containing a pair of user and item, the CTR

prediction aims to predict whether the user would click the item.

Here x denotes the input data instance, and 𝑦 ∈ {0, 1} denotes the
label indicating whether the user clicked the item.

In deep learning-based CTR prediction models, an embedding

layer E is usually adopted to transform the input x with high-

dimensional sparse raw features into low-dimensional dense embed-

dings e. The embedding e can be obtained via embedding lookup [5],

formulated as e = E(x). The embedding e is further fed into the

CTR model, formulated as follows:

𝑦 = F (e,Θ) = F (E(x),Θ) (1)

where 𝑦 is the probability that a user will click a given item, F (·) is

the prediction model, and Θ is the corresponding trainable model

parameters. Cross-entropy loss is commonly adopted to train Θ,
which can be formulated as follows:

argmin
Θ

LD(Θ) =
∑

(x,𝑦) ∈D

𝑦 log𝑦 + (1 − 𝑦) log (1 − 𝑦) .
(2)

2.2 Fusion Learning in CTR

In this section, we aim to take a deeper look at the CTR model F (·).

Here, we formulate the CTR model as an instance of the fusion

design, written as:

F = P(G|c, o). (3)

Here P denotes the fusion learning, parameterized by fusion con-

nection c and fusion operation o. G = {G𝑠 ,G𝑑 } refer to the set of

all components in the CTR model, with G𝑠 and G𝑑 represent the

set of shallow and deep components, respectively. Various shallow

components such as cross layer [36], factorization machine [5], or

inner product [26] can be chosen. Similarly, deep components may

also vary from MLP layer [43] to self-attention module [32]. Below,

we separately discuss the two parameters of fusion learning: fusion

connection c and fusion operation o.

2.2.1 Fusion Connection. Fusion connection c determines the con-

nectivity between different components. Such connectivity deter-

mines what information is fed into the current component. There

are only two potential states of connectivity between two compo-

nents, i.e., CONNECTED or DISCONNECTED. Hence, we adopt a con-

nectivity function c(·) to formulate the fusion connection from

component G𝑖 to component G𝑗 as

c
(
G𝑖 ,G𝑗

)
=

{
1, if CONNECTED

0, if DISCONNECTED
(4)

In the fusion learning, each component has its level, which con-

strains the direction of the connection. The current component only

takes the outputs from lower-level components as the input for the

fusion module. Such design is introduced to avoid cycles [30, 31].

Such a constraint can be formulated on each
(
G𝑖 ,G𝑗

)
pairs:

c
(
G𝑖 ,G𝑗

)
= 1 → 𝐿(𝑖) < 𝐿( 𝑗),∀

(
G𝑖 ,G𝑗

)
(5)

where 𝐿(𝑖) is a non-negative integer denotes the level of component

G𝑖 . It increases monotonically as the component gets deeper.

2.2.2 Fusion Operation. After determining the fusion connection,

a fusion operation 𝑜 needs to be selected for each component. The

fusion operation aggregates the output representations from the

connected components. It outputs a fused representation, which

serves as the input for the succeeding component G𝑗 , as shown in

Figure 1. This process can be written as:

ê𝑗 = 𝑜 𝑗 ({c
(
G𝑖 ,G𝑗

)
· e𝑖 }). (6)

Here ê𝑗 refers to the input for component G𝑗 and e𝑖 denotes the

output for preceding component G𝑖 . Note that the fusion operations

are usually selected from a set of candidates O. It may vary from

simple operations such as ADD or CONCAT to complex operations

like Multi-Head Bilinear Fusion Ops [24]. Given the one-to-one

mapping relationship between fusion operation 𝑜 𝑗 and component

G𝑗 , we have |o| = |G|.

2.2.3 Fusion Learning in CTR. After formulating fusion connection

learning and fusion operation selection, the prediction in Eq. 1 can

be reformulated as:

𝑦 = F (E(𝑥),Θ) = P(G|c, o) (E(𝑥),Θ) . (7)

Consequently, the training objective in Eq. 2 can be rewritten as:

argmin
Θ, c∈{0,1}, o∈O

LD (Θ, c, o)
(8)

3 OptFusion

In this section, we detail the OptFusion framework under the fusion

learning setting.We first describe the search space of the framework

in Section 3.1. Then, we introduce fusion connection learning in

Section 3.2 and fusion operation selection in Section 3.3. Finally, we

elaborate on the details of the one-shot learning algorithm, which

jointly conducts fusion connection learning and fusion operation

selection for OptFusion, in Section 3.4.

746



WSDM ’25, March 10–14, 2025, Hannover, Germany Kexin Zhang et al.

3.1 Search Space

In this section, we detail the search space of the framework in

the fusion learning setting. The OptFusion framework consists of

one embedding component E(·), 𝑛 shallow components, 𝑛 deep

components, and one output componentH(·). The number of all

components in the search space is 2𝑛 + 2. The default configuration

of the OptFusion framework with 𝑛 = 3 is illustrated in Figure 1 (b).

The setting of 𝑛 is discussed in Section 4.4.4.

Candidates of Fusion operation. Shallow and deep components

may receive multiple inputs from lower-level components. Thus,

a fusion operation is needed to fuse these inputs. The commonly-

used fusion operations include ADD, PROD, CONCAT and ATT, which
represent element-wise addition, Hadamard product, concatenation,

and attention, respectively. Details are shown in Table 1. Each

component can select one of them to fuse information from lower-

level components. Alternatively, each component can also output

a weighted sum. Depending on this, we propose two variants of

OptFusion, namely Hard and Soft.

Table 1: A summary of different fusion operations.

Operation Description Formulation

ADD Element-wise addition x
′ = x𝑖 + x𝑗

PROD Hadamard product x
′ = x𝑖 � x𝑗

CONCAT Concatenation x
′ = W[x𝑖 | |x𝑗 ]

ATT Attention mechanism
x
′ = 𝑎𝑖 · x𝑖 + 𝑎 𝑗 · x𝑗

𝑎𝑖 =
exp(wT

2ReLU(W1x𝑖+b1 ) )∑
𝑗 exp(w

T
2ReLU(W1x𝑗+b1 ) )

Take an example to illustrate the fusion operation, two vectors x𝑖 ∈ R
𝑑 and

x𝑗 ∈ R
𝑑 are used as inputs, and x

′ ∈ R
𝑑 is the output of fusion. In PROD, �

denotes the Hadamard product operation. In CONCAT, | | denotes the concatenation

operation, andW ∈ R
𝑑×2𝑑 is the trainable weight parameter. In ATT, 𝑎𝑖 and 𝑎 𝑗

are attention coefficients,W1 ∈ R
𝑑×𝑑 , w2 ∈ R

𝑑 and b1 ∈ R
𝑑 are the trainable

weight and bias parameters.

Search space analysis. In this subsection, we intuitively illustrate

the difficulty in selecting suitable fusions. Given that OptFusion

aims to search for both fusion connections and operations, we

need to jointly consider their possibility. The number of possible

connections is determined by the number of components 2𝑛 + 2.

The number of all valid connections equals to 2× (1 + 3 + · · · + 2𝑛 −
1) + 2(𝑛 + 1) = 2𝑛2 + 2𝑛 + 1. For each valid connection, the number

of choices for its connection state is 2. Thus, the size of the search

space for connections is 22𝑛
2+2𝑛+1. For each component, suppose

the number of possible choices for its fusion operation is 𝑘 . Thus,
the search space size for the fusion operation is 𝑘2𝑛+1. The number

of possible fusions equals 22𝑛
2+2𝑛+1×𝑘2𝑛+1 = O(22𝑛 ×𝑘𝑛). Directly

selecting over such a large space is almost impossible. Hence, we

separately discuss the connection learning and operation selection

in the following two sections.

3.2 Fusion Connection Learning

A critical issue for fusion connection learning lies in the discrete

selection space. Searching within a discrete candidate set of connec-

tions (i.e., C = {CONNECTED, DISCONNECTED}) is non-differentiable,
which makes the architecture untrainable. To solve this problem,

we relax the discrete search space to be continuous by learning the

relative importance (i.e., probability) of each connection and intro-

duce the architecture parameters 𝜶 ∈ R
(2𝑛+2)2 to parameterize the

connectivity function c(·) so that the fusion connection becomes

learnable. With 𝜶 𝑖 𝑗 representing the connectivity c(G𝑖 ,G𝑗 ) from

component G𝑖 to G𝑗 , Eq. 4 can be rewritten as follows

𝜶 𝑖 𝑗

{
> 0, if CONNECTED

≤ 0, if DISCONNECTED
, 1 ≤ 𝑖, 𝑗 ≤ 2𝑛 + 2. (9)

To satisfy the level constraint in Eq. 5, 𝜶 is constrained as:

𝜶 𝑖 𝑗 ≥ 0 → 𝐿(𝑖) < 𝐿( 𝑗), ∀1 ≤ 𝑖, 𝑗 ≤ 2𝑛 + 2. (10)

To enable end-to-end training and get meaningful gradients

for 𝜶 , we adopt the straight-through estimator (STE) function [1].

The STE can be formulated as a customized function S(·), with its

forward pass as a unit step function 𝑆 (𝑥) = 0, 𝑥 ≤ 0 and 𝑆 (𝑥) =
1, 𝑥 > 0. 𝑆 (𝑥)’s backward pass equals to 𝑑

𝑑𝑥 S(𝑥) = 1, meaning that

it will directly pass the gradient backward. Therefore, we can mimic

a discrete selection while providing valid gradient information

for connection parameters 𝜶 , making the whole process trainable.

Hence, the final output in Eq. 7 can be rewritten as:

𝑦 = P(G|𝜶 , o) (E(𝑥),Θ) . (11)

3.3 Fusion Operation Selection

For shallow or deep components, they may receive multiple con-

nections from lower-level components. One operation needs to be

selected from the set of fusion operations to fuse the information

received from lower-level components. Specifically, we define the

operation candidates as O = {ADD, PROD, CONCAT, ATT} and |O| = 𝑘 .
Similar to connection learning, we also relax the discrete search

space of fusion operations to be continuous by learning the rela-

tive importance of each operation and introduce the architecture

parameters 𝜷 ∈ R
𝑘×(2𝑛+2) to represent the operation selection.

Given a component 𝑗 , we assign an architecture parameter 𝛽𝑜𝑗
to an operation 𝑜 ∈ O, the importance of operation 𝑜 is computed

as a softmax of all candidate operations 𝑜′ ∈ O:

𝑝𝑜𝑗 = exp
(
𝛽𝑜𝑗

)
/
∑
𝑜 ′ ∈O

exp
(
𝛽𝑜

′

𝑗

)
, (12)

where 𝑝𝑜𝑗 is the importance of operation 𝑜 . During the selection

stage, the input of component 𝑗 equals a weighted summation over

all candidate operations:

ê𝑗 =
∑
𝑜∈O

𝑝𝑜𝑗 · 𝑜
(
{𝜶 𝑖 𝑗 · e𝑖 }

)
, (13)

where e𝑖 is the output of component 𝑖 . 𝑜 (·) fuses all the inputs by
using operation 𝑜 . Finally, by parameterizing the selection of fusion

operation 𝑜 ∈ O with architecture parameters 𝜷 , Eq. 11 can be

rewritten as follows:

𝑦 = P(G|𝜶 , 𝜷) (E(𝑥),Θ) . (14)

3.4 One-shot Learning Algorithm

After obtaining Eq. 14, which parameterizes the fusion learning

via architecture parameter {𝜶 , 𝜷}, we need to rewrite the original

learning goal in Eq. 8 to incorporate the fusion learning process.

The optimization process can be rewritten as:

min
𝚯,{𝜶 ,𝜷 }

LD (𝚯, {𝜶 , 𝜷}) (15)

We can observe that the parameters that need to be optimized

include the following three categories:
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• 𝚯, the model parameters, including the parameters in all compo-

nents and the transformation matrices between components.

• {𝜶 , 𝜷}, the architecture parameters of fusion design, representa-

tion connection learning and operation selection, respectively.

Firstly, to disentangle the model and architecture parameters,

we follow the paradigm from NAS [18, 31] by first learning the

architecture parameters {𝜶 , 𝜷} and conduct retraining to get model

parameter 𝚯 given the architecture parameters.

Secondly, the entanglement between fusion connection and fu-

sion operation remains a challenge. An intuitive approach is deter-

mining fusion connection 𝜶 and fusion operation 𝜷 sequentially.

However, such a design omits the mutual influence between con-

nection and operation, as selecting inappropriate operations would

decrease the likelihood of connections.

Finally, we formulate the one-shot learning algorithm, which

jointly and simultaneously conducts connection learning and oper-

ation selections given their entanglement. The one-shot learning

algorithm consists of two stages: selection stage and re-train stage. In

the selection stage, connection learning and operation selection are

achieved by simultaneously optimizing the architecture parameters

of connections 𝜶 and fusion operations 𝜷 . In the re-train stage, the

architecture parameters 𝜶 and 𝜷 are fixed, and the model parameter

Θ is re-trainted.

3.4.1 Selection Stage. The goal in the selection stage is to jointly

learn𝜶 and 𝜷 given theirmutual information. This allows themodel

to explore different connections and fusion operations during the

selection process. The optimization can be formulated as below:

𝜶 ∗, 𝜷∗ = argmin
𝚯,{𝜶 ,𝜷 }

LD (𝚯, {𝜶 , 𝜷}) (16)

3.4.2 Re-train Stage. In the retraining stage, the parameters need

to be optimized only to include the model parameters 𝚯. We keep

the selected architecture parameters 𝜶 ∗ and 𝜷∗ fixed, re-train the

model parameters 𝚯 to obtain the final model. Following previous

works [18], the selected connection tensor is determined as 𝛼∗ =
1𝛼𝑖,𝑘>0 during the re-training stage. With the different ways to

conduct fusion operations based on the score, we propose two

variants of the proposed model, i.e., OptFusion-Soft and OptFusion-

Hard, which refer to soft selection and hard selection of the fusion

operations, respectively.

OptFusion-Soft. In OptFusion-Soft, fusion operations are per-

formed in a soft manner, i.e., combining the weighted summation

over all candidate operations according to Equation 13. The final

architecture parameter for fusion can be formulated as 𝛽∗ = 𝛽 .
OptFusion-Hard. The final fusion operation type is selected with

the largest weight based on the learned fusion parameters. This is

formalized as: 𝛽𝑜∗
𝑘

= 1 if 𝑜 = argmax
𝑜∈O

𝛽𝑜
𝑘
and 𝛽𝑜∗

𝑘
= 0 otherwise.

After obtaining the architecture parameters 𝛼∗ and 𝛽∗ for fu-

sion connection and operation. The model parameters are then

re-trained with fixed architecture parameters.

𝚯∗ = argmin
𝚯

LD

(
𝚯,𝜶 ∗, 𝜷∗) (17)

This one-shot selection algorithm allows OptFusion to efficiently

explore different architectures during the selection stage and then

fine-tune the discovered architecture in the re-train stage. Finally,

the pseudo-code of the learning algorithm for OptFusion is sum-

marized in Algorithm 1.

Algorithm 1 The OptFusion Algorithm

Require: Training dataset D consisting original features 𝑥 and

ground-truth labels 𝑦
Ensure: Learned architecture parameter𝜶 ∗, 𝜷∗, model parameters

𝚯∗

1: Selection Stage

2: t=0

3: while t < T do

4: t = t + 1

5: while not converged do

6: Sample a mini-batch B from the training dataset D

7: Update the model parameters𝚯, connection parameters

𝜶 and operation parameters 𝜷 by Eq. 16

8: end while

9: end while

10: Re-train Stage

11: Retrain 𝚯 given 𝜶 ∗, 𝜷∗ by Eq. 17

4 Experiments

In this section, to comprehensively validate OptFusion, we design

and conduct various experiments over three large-scale datasets,

aiming to answer the following research questions:

• RQ1: Could OptFusion achieve superior performance compared

with mainstream deep CTR prediction models?

• RQ2: How efficient is OptFusion compared with mainstream

deep CTR prediction models?

• RQ3: How does the selection of fusion operation influence the

performance?

• RQ4: How effective is the one-shot selection algorithm?

• RQ5: How compatible is OptFusion with existing components?

• RQ6: How does the number of components affect performance?

• RQ7: Does OptFusion select the suitable fusion?

4.1 Experimental Setting

4.1.1 Datasets. To demonstrate the effectiveness of OptFusion, we

evaluate our model on three real-world datasets, the statistics of

datasets are described in Table 2.

Table 2: Statistics of datasets.

Dataset #samples #Fields #Values pos ratio

Criteo 4.6 × 107 39 6.8 × 106 0.2562

Avazu 4.0 × 107 24 4.4 × 106 0.1698

KDD12 1.5 × 108 11 6.0 × 106 0.0445

Note: #samples refers to the total samples in the dataset, #field refers to the number
of feature fields for original features, #value refers to the number of feature values
for original features, pos ratio refers to the positive ratio.

Criteo2 dataset consists of ad click data over a week. It consists

of 26 categorical feature fields and 13 numerical feature fields. Fol-

lowing the winner solution of the Criteo Advertising Challenge [9],

we discretize each numeric value 𝑥 to 
log2 (𝑥)�, if 𝑥 > 2; 𝑥 = 1

2https://www.kaggle.com/c/criteo-display-ad-challenge
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otherwise. We replace infrequent categorical features with a default

"OOV" (i.e. out-of-vocabulary) token, with min_count=2.

Avazu3 dataset contains 10 days of click logs. It has 24 fields

with categorical features. We remove the instance_id field and trans-

form the timestamp field into three new fields: hour, weekday and

is_weekend. We replace infrequent categorical features with the

"OOV" token, with min_count=2.

KDD124 dataset contains training instances derived from search

session logs. It has 11 categorical fields, and the click field is the

number of times the user clicks the ad. We replace infrequent fea-

tures with an "OOV" token, with min_count=2.

4.1.2 Metrics. To evaluate the performance of CTR Prediction, we

adopt the most commonly-used evaluation metrics [5], i.e., AUC

(Area Under ROC) and LogLoss (cross-entropy). Note that 0.1%
improvement in AUC is considered significant [5, 26, 41].

4.1.3 Baselines. To demonstrate the effectiveness of OptFusion,

we compare the performance with four categories of deep CTR

prediction models, including (i) stacked models: FNN [43] and

PNN [26], DCNv2s [37]; (ii) parallel models: DeepFM [5], DCN [36],

xDeepFM [14], DCNv2p [37]5; (iii) models with expert design on

fusion: EDCN [3]; (iv) NAS models: AutoCTR [31], NASRec [42].

4.1.4 Implementation Details. We use Adam [12] as the optimizer

for all models and set the embedding size as 40 for the Criteo and

Avazu datasets and 16 for the KDD12 dataset. The batch size is

fixed at 4096. Following [3], we employ a three-layer MLP with

the number of neurons equal to 𝑑𝑖𝑚𝑒𝑚𝑏 × 𝑛𝑢𝑚𝑓 𝑖𝑒𝑙𝑑 . We also in-

corporate an auxiliary shallow block 𝑆0 within the candidate set

of connections to mimic the stacked structure. We search the op-

timal learning rate from {3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5} and 𝐿2
regularization from {3e-6, 1e-6, 3e-7, 1e-9, 0}. For OptFusion, dur-

ing the re-training phase, we reuse the optimal learning rate and

𝐿2 regularization obtained in the initial training. 𝛼 in connection

search is initialized as 0.5 to ensure equal weight for each block at

the start. Hyperparameters used in the experiments are reported in
6, and the implementation of our algorithm is available here7. For

NAS models, we reuse the official implementation8 with the same

embedding size and batch size as ours.

4.2 Overall Performance (RQ1)

The overall performance of our OptFusion and other deep CTR

prediction models on three datasets are reported in Table 3. We

summarize the observations as follows:

First, OptFusion, both soft and hard, outperforms all the SOTA

baselines over three datasets in terms of both AUC and Logloss by

a significant margin. This demonstrates that OptFusion can effec-

tively find a suitable fusion connection and operation. It also echoes

our intuition: fusion learning is an important but overlooked aspect

of feature interaction modeling. Specifically, OptFusion improves

3http://www.kaggle.com/c/avazu-ctr-prediction
4http://www.kddcup2012.org/c/kddcup2012-track2/data
5DCNv2s refers to a stacked design while DCNv2p involves a parallel design in the
original paper [37].
6https://github.com/kexin-kxzhang/OptFusion/hyperparam.md
7https://github.com/kexin-kxzhang/OptFusion
8https://github.com/facebookresearch/nasrec

Table 3: The overall performance comparison.

Method
Criteo Avazu KDD12

AUC Logloss AUC Logloss AUC Logloss

FNN 0.8037 0.4473 0.7860 0.3766 0.7978 0.1534

PNN 0.8048 0.4463 0.7886 0.3752 0.8011 0.1527

DCNv2s 0.8088 0.4427 0.7877 0.3753 0.8030 0.1536

DeepFM 0.8038 0.4486 0.7856 0.3806 0.7963 0.1532

DCN 0.8063 0.4450 0.7875 0.3779 0.7968 0.1537

xDeepFM 0.8067 0.4453 0.7860 0.3773 0.7966 0.1542

DCNv2p 0.8085 0.4451 0.7894 0.3759 0.8012 0.1531

EDCN 0.8102 0.4419 0.7917 0.3727 0.8122 0.1498

AutoCTR 0.8082 0.4436 0.7883 0.3761 0.7949 0.1533

NASRec 0.8090 0.4435 0.7893 0.3752 0.7958 0.1530

OptFu.-H 0.8108* 0.4413* 0.7935* 0.3717* 0.8129 0.1496

OptFu.-S 0.8113* 0.4408* 0.7938* 0.3715* 0.8158* 0.1489*

Impr 0.0011 0.0023 0.0021 0.0012 0.0036 0.0009

Here ∗ denotes statistically significant improvement (measured by a two-sided
t-test with 𝑝-value < 0.05) over the best baseline. Bold scores are the best perfor-
mance, and underlined scores are the best baseline performance. OptFu.-H and
OptFu.-S stand for OptFusion-Hard and OptFusion-Soft, respectively.

AUC over the best baseline by 0.0011, 0.0021, and 0.0036 on three

datasets, respectively.

Second, OptFusion, with a smaller search space, outperforms

NASRec and AutoCTR, which contain a larger search space. Such

an observation demonstrated that OptFusion could better exploit

and explore the fusion search space, while NASRec and AutoCTR’s

huge search space could potentially lead to sub-optimal results.

Third, EDCN, which aims to fuse explicit and implicit informa-

tion densely, constantly performs as the best baseline over all three

datasets. This proves that the naive fusion design is an obstacle

towards accurate prediction, echoing previous observations [3].

Finally, the performance of naive fusions varies across datasets.

For example, on the Avazu datasets, DCNv2p, a parallel model, ex-

hibits superior performance. On the Criteo and KDD12 datasets,

DCNv2s, a stack model, outperforms other baselines. This inter-

esting observation further reveals the limitation of naive fusion

design, which we will discuss in Section 4.5.

4.3 Efficiency Analysis (RQ2)

In addition to model effectiveness, training, and inference efficiency

are crucial considerations when deploying CTR prediction models

in practice. In this section, we investigate the time complexity of

OptFusion. Due to the expansive search space of AutoCTR and NAS-

Rec, training efficiency experiments are conducted on an NVIDIA

A40 GPU with 48G memory, while inference efficiency experiments

are conducted on an NVIDIA RTX 4090 GPU with 24G memory.

We illustrate the total training time of NAS models trained on

all three datasets in Figure 2 (a). Here, the total training time en-

compasses both the search and re-train stages. We observe that

OptFusion achieves the shortest total training time compared to

other NAS models. This is attributed to the narrowed search space

for OptFusion and the adoption of a one-shot learning algorithm.

As depicted in Figure 2 (b-d), we plot the Inference Time-AUC

curve of mainstream deep CTR models trained on three datasets,

indicating the relationship between time complexity and model per-

formance. Compared with models such as DCN, DeepFM, and PNN,

which achieve the least inference time, both EDCN and OptFusion

take fusion design into consideration, and they tend to achieve
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the highest AUC. This can be attributed to the trade-off between

inference time and model performance.

4.4 Ablation Study

4.4.1 Fusion Operation (RQ3). In this section, we aim to investigate

how the fusion operation influences the performance of deep CTR

models. We reuse the searched fusion connection and replace the

searched fusion operation with four identical fusion operations:

ADD, PROD, CONCAT, and ATT, as introduced in Table 1. These

models corresponding to four fusion operations are retrained from

scratch. Results of OptFusion-soft and OptFusion-hard selection,

which adopt different operations for different blocks, in Table 3 are

also listed for easy comparison. The results are shown in Table 4.

We can easily observe that both Soft and Hard methods exhibit

significantly superior performance compared to models with fixed

fusion operations. This verifies the effectiveness of our fusion oper-

ation search instead of using a fixed fusion operation.

In addition, ADD and PROD operations outperform the others.

This may be attributed to the fact that element-wise addition and

Hadamard products are parameter-free operations, making them

easier to train steadily compared to methods incorporating param-

eters like concatenation and attention pooling.

Table 4: Ablation study on fusion operation.

Operation
Criteo Avazu KDD12

AUC Logloss AUC Logloss AUC Logloss

Add 0.8111 0.4422 0.7872 0.3970 0.7924 0.1585

Product 0.8077 0.4443 0.7860 0.3784 0.7938 0.1584

Concatenate 0.8075 0.4445 0.7837 0.3814 0.7926 0.1546

Attention 0.8073 0.4442 0.7843 0.3794 0.7883 0.1597

Hard 0.8108 0.4413 0.7935 0.3717 0.8129 0.1496

Soft 0.8113 0.4408 0.7938 0.3715 0.8158 0.1489

4.4.2 Selection Algorithm (RQ4). In this section, we investigate the

search algorithm design. We aim to compare the one-shot selection

algorithm, which jointly selects both the connection and opera-

tion simultaneously, with a sequential selection algorithm, which

sequentially selects the connection and operation. Experiments

are conducted over Criteo and Avazu datasets, and the results are

shown in Table 5.

Table 5: Ablation study on selection algorithm.

Methods
Criteo Avazu

AUC Logloss AUC Logloss

One-shot 0.8113 0.4408 0.7938 0.3715

Sequential 0.8109 0.4411 0.7934 0.3717

Results indicate that our one-shot selection algorithm performs

better than the sequential selection algorithm. This gap is likely

caused by the mutual influence between fusion connection and op-

eration. Such an observation verifies the effectiveness of OptFusion

and the one-shot selection algorithm.

4.4.3 Shallow Component (RQ5). In this section, we conduct an

ablation study on the compatibility of OptFusion over various ex-

plicit components. In the default setting, we adopt CrossNet [36] as

the explicit component for OptFusion. We further replace CrossNet

with CrossNetV2 [37] and CIN [14], and construct its two variants:

OptFusion-CrossNetV2 and OptFusion-CIN. The results are sum-

marized in Table 6. We additionally adopt the fusion connection

and operation from EDCN as a comparison for all three explicit

components, namely EDCN, EDCN-CrossNetV2, and EDCN-CIN.

Table 6: Ablation study on shallow components.

Method
Criteo Avazu

AUC Logloss AUC Logloss

DCN 0.8063 0.4450 0.7895 0.3762

EDCN 0.8102 0.4419 0.7917 0.3727

OptFu.-Soft 0.8113 0.4408 0.7938 0.3715

DCNv2 0.8085 0.4451 0.7903 0.3751

EDCN-CrossNetV2 0.8091 0.4434 0.7923 0.3723

OptFu.-CrossNetV2 0.8111 0.4408 0.7942 0.3717

xDeepFM 0.8067 0.4453 0.7860 0.3773

EDCN-CIN 0.8089 0.4426 0.7943 0.3712

OptFu.-CIN 0.8112 0.4408 0.7955 0.3703

OptFu. is an abbreviation for OptFusion.

From the table, we can easily observe that OptFusion and its

two variants achieve the best performance on both datasets. These

results underscore the robustness and compatibility of OptFusion

to different explicit components. Besides, EDCNs constantly rank

the 2nd, outperforming the original models. This further indicates

the importance of dense fusion in deep CTR models.

4.4.4 Number of Components (RQ6). This section evaluates the

impact of varying the number of components (𝑛) on OptFusion’s

performance. The default setting for 𝑛 is 3. To investigate the effect

of different configurations, we also conduct experiments with 𝑛 = 2

and 𝑛 = 4. Table 7 summarizes the results, including performance

metrics and total training time (h) for each configuration across the

Criteo and Avazu datasets.

Our observations indicate that increasing the number of compo-

nents (𝑛) results in a marginal improvement in performance metrics

at the cost of total training time. For instance, with 𝑛 = 4, the train-

ing time is approximately 1.29 times longer than with 𝑛 = 3 and

about 1.76 times longer than with 𝑛 = 2. Based on these results, we

choose 𝑛 = 3 as the default configuration for OptFusion, as it offers

a balanced trade-off between performance and efficiency.

Table 7: Ablation study on the number of components.

Number
Criteo Avazu

AUC Logloss Time (h) AUC Logloss Time (h)

n=2 0.8112 0.4408 3.38h 0.7937 0.3716 1.47h

n=3 0.8113 0.4408 4.70h 0.7938 0.3715 1.98h

n=4 0.8115 0.4406 5.76h 0.7939 0.3717 2.67h

4.5 Case Study (RQ7)

This section uses a case study to investigate the selected connection

and operation obtained from OptFusion on three datasets. The se-

lected results, including both connection and operation, are shown

in Figure 3. For better visualization, we only highlight the operation

with the highest probability in OptFusion-soft, which is also the

selected operation in OptFusion-hard.

Based on the result, we can make the following observation:

First, the fusion searched on the Criteo dataset exhibits a prefer-

ence for parallel structure, while on the Avazu and KDD12 datasets,
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(a) Total Training Time on Three Datasets (b) Criteo Inference time (c) Avazu Inference time (d) KDD12 Inference time

Figure 2: Efficiency analysis across three datasets. The figure includes (a) total training time on three datasets and (b–d) inference

efficiency analysis for the Criteo, Avazu, and KDD12 datasets.

Figure 3: A case study of OptFusion on three datasets.

the learned architectures indicate a prevalent inclination towards

stacked structure. Second, the output layer prefers to fuse connec-

tions from deep layers and the embedding layer. In addition, the

embedding layer is connected to many other blocks. Third, the

preference for fusion operation varies among datasets. ADD and

PROD operations are the most common operations on the Criteo

and Avazu datasets, while ATT and PROD are most frequently used

on the KDD12 dataset. This case study provides valuable insights

into the selected fusion by OptFusion, demonstrating the effective-

ness and adaptability of OptFusion to different datasets. It may also

provide design insights for future CTR models.

5 Related Work

5.1 Deep CTR Prediction Models

Most CTR models adopt two naive design fusion designs [35], paral-

lel and stacked. Models with parallel fusion [5, 14, 32, 36, 37] lever-

age shallow and deep components that explicitly and implicitly

model feature interactions, respectively. Fusion operations mainly

are addition [5] or concatenation [36, 37]. Models with stacked

fusion [6, 7, 15, 26, 37, 40] tend to stack the shallow components

before the deep components with concatenation being the common

fusion operation [26]. These models mainly advance CTR predic-

tion by proposing various shallow components, such as inner prod-

uct [26], factorization machine [5], outer product [6], convolutional

operator [15], Hadamard product [40] and different customized

layers [7, 14, 36, 37] or deep components, such as MLP [43] and

Self-attention layer [32], to better model feature interactions.

Researchers also proposed methods with expert-designed fusion

that are beyond parallel and stacked design. EDCN [3] performs a

dense fusion strategy and captures the layer-wise interactive sig-

nals between the deep and shallow components. FinalMLP [24]

proposes a Multi-Head Bilinear Fusion Ops as the fusion operation.

EulerNet [34], on the other hand, explores feature interaction learn-

ing using Euler’s formula, enabling adaptive and efficient fusion of

feature interactions in CTR prediction models. However, these pro-

posed solutions [3, 24] tend to consider the fusion learning problem

under specific settings.

OptFusion differs itself by automatically learning connections

and selecting operations. Many of the aforementioned methods can

be considered as specific instances of the OptFusion framework.

5.2 Neural Architecture Search and its
Applications in CTR Prediction

With the advancement of neural architecture search (NAS) [1, 8, 18,

19, 39], various methods have been proposed in CTR prediction [33],

proving valuable for tasks such as determining appropriate embed-

ding dimensions [10], conducting feature selection [17, 21], discov-

ering beneficial feature interactions [16, 22], selecting integration

function [11, 20], optimizing hyperparameters [13], designing com-

prehensive architectures for feature interaction modeling [25], or

learning suitable embedding table [23]. Various techniques such

as evolutionary approach [27], gradient approach [18], or rein-

forcement learning-based methods [44] are introduced to obtain

suitable search results. Specifically, NAS techniques have also been

adopted to search for suitable CTR model structures [31, 42]. Our

work distinguishes itself from the existing research by addressing

the challenge of fusion learning, a different problem in deep CTR

models. The connection learning and operation selection among

components are introduced as OptFusion’s search space, enabling

more efficient and effective model architectures for CTR prediction.

6 Conclusion

In this paper, we address the challenges of fusion learning in deep

CTR prediction models and propose OptFusion, which automat-

ically selects suitable fusion connections and fusion operations.

OptFusion involves a one-shot learning algorithm designed to ef-

fectively conduct both tasks. The model is subsequently retrained

with the learned architecture. Extensive experiments on three large-

scale datasets demonstrate the superior performance of OptFusion

in terms of efficiency and effectiveness. Several ablation studies

investigate the configuration of OptFusion in improving prediction

performance. Additionally, a case study on the connection and fu-

sion operations further validates the efficacy of our approach in

learning suitable architectures.
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Ethical Consideration

In conducting our research and proposing the OptFusion approach,

we have adhered to ethical considerations to ensure the integrity

and social responsibility of our work. Our research primarily fo-

cuses on advancing the technical aspects of recommendation sys-

tems. Our experiment is based on public benchmarks and does

not involve direct interactions with human subjects or the collec-

tion of personal data. As such, potential ethical concerns related to

informed consent, privacy, and data handling are minimized.

Our work aims to contribute to the field of recommendation

systems by addressing technical challenges associated with auto-

matically learning suitable fusions in click-through rate prediction

models. Throughout our research process, we have followed es-

tablished research ethics guidelines and practices to ensure the

accuracy, transparency, and rigor of our methods and results. We

have also taken care to properly attribute prior works and pro-

vide appropriate citations to relevant sources to maintain academic

integrity.

We acknowledge that while our research primarily concerns

technical advancements, the deployment and application of rec-

ommendation systems in real-world scenarios may raise broader

ethical considerations related to user privacy, fairness, and potential

algorithmic biases. We recognize their significance and encourage

researchers and practitioners to approach the deployment of rec-

ommendation systems with careful consideration of these ethical

implications.

In summary, our research on OptFusion has been conducted with

a commitment to upholding ethical standards within the scope of

our technical contributions.
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