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ABSTRACT
Multi-task learning for various real-world applications usually in-
volves tasks with logical sequential dependence. For example, in
online marketing, the cascade behavior pattern of 𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 →
𝑐𝑙𝑖𝑐𝑘 → 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 is usually modeled as multiple tasks in a multi-
task manner, where the sequential dependence between tasks is
simply connected with an explicitly defined function or implicitly
transferred information in current works. These methods allevi-
ate the data sparsity problem for long-path sequential tasks as the
positive feedback becomes sparser along with the task sequence.
However, the error accumulation and negative transfer will be a
severe problem for downstream tasks. Especially, at the beginning
stage of training, the optimization for parameters of former tasks is
not converged yet, and thus the information transferred to down-
stream tasks is negative. In this paper, we propose a prior informa-
tion merged model (PIMM), which explicitly models the logical
dependence among tasks with a novel prior information merged
(PIM) module for multiple sequential dependence task learning in a
curriculum manner. Specifically, the PIM randomly selects the true
label information or the prior task prediction with a soft sampling
strategy to transfer to the downstream task during the training.
Following an easy-to-difficult curriculum paradigm, we dynami-
cally adjust the sampling probability to ensure that the downstream
task will get the effective information along with the training. The
offline experimental results on both public and product datasets
verify that PIMM outperforms state-of-the-art baselines. Moreover,
we deploy the PIMM in a large-scale FinTech platform, and the
online experiments also demonstrate the effectiveness of PIMM.
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1 INTRODUCTION
Multi-task learning (MTL) has been widely introduced in many real-
world applications such as product recommendation and online
marketing [1, 6, 18, 20, 21]. AnMTLmodel aims to learn multiple re-
lated tasks simultaneously and leverages the shared representation
to improve performance for all the tasks[3]. In these applications,
some tasks are logically dependent on each other, which indicates
that downstream task requires information from prior tasks. As a
result, we should exploit the knowledge about such a dependency
relationship and help the MTL model more effectively share the
learned information among tasks. In all, modeling the relationships
among tasks properly is one of the critical issues in MTL [19].

For many real-world commercial applications, customer con-
version follows a sequential behavior pattern. For instance, when
distributing mutual funds to customers online, we usually con-
duct some marketing campaigns to promote revenue. As Figure 1
illustrates, the user behavior in a campaign follows the path im-
pression → click → conversion → core conversion, which indicates
that only if the positive feedback in the former task occurs, the
positive feedback can be expected in the subsequent task, i.e. the
target task core conversion is progressive. The data sparsity problem
thereby becomes severe along with the behavior path. A common
way to handle this problem is to formulate it as a multi-task learn-
ing regime. On the one hand, notice that core conversion might
occur only after the click and purchase behavior occurred. Hence,
the regime requires taking the logical dependencies between tasks
into account. On the other hand, the downstream tasks will be
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impression click conversion core 
conversion

Figure 1: The customer conversion path for a financial mar-
keting campaign. Core conversion (purchase over 1,000 CNY)
is the primary target due to the commercial consideration.

affected by the former task at the early stage of training, which
leads to a phenomenon called error accumulation. Specifically, the
downstream tasks will make predictions based on the predicted
label of former tasks. However, when the optimization is not con-
verged, the performance of the target task will suffer greatly from
the accumulated loss of former tasks.

Previous efforts [9, 12, 13] have been made to share information
among tasks, which can alleviate the data sparse problem. Never-
theless, they ignore modeling the sequential logical dependence
among tasks[18]. In recent years, the research on MTL with task
dependency has received increasing attention. A collection of mod-
els capture the task dependency by simply considering the explicit
estimated probability of the prior task with a defined function. Ma
et al. [10] proposed the Entire Space Multi-task Model (ESMM),
which explicitly transfers the predicted probability of the prior task
by multiplying it with an estimated conditional probability. Further-
more, wen et al. [15] consider more auxiliary tasks in their proposed
𝐸𝑆𝑀2 for probability transferring. However, the simple function
cannot encode enough information among tasks. To enhance the
shared information, several methods focus on exploiting the implicit
prior task representation. Adaptive Information Transfer Multi-task
(AITM) framework [18] transfers implicit information from the
former task’s hidden layer in the corresponding tower with the
self-attention mechanism. Inspired by AITM, Wu [16] proposed a
Multi-level Network Cascades Model (MNCM). MNCM replaces the
shared-bottom structure of AITM with the experts-bottom struc-
ture and uses Expert-Level Information Transfer Module (EITM) to
transfer implicit representation among task-specific experts. How-
ever, the prior task information is not fully utilized since they ignore
the explicit logical dependency information of the previous task.
Besides, the aforementioned methods also lead to error accumu-
lation and negative transfer for downstream tasks. Especially, at
the beginning stage of training, the optimization for parameters
of former tasks is not converged yet, and thus the task-specific
information transferred to downstream tasks could be misleading,
which could exacerbate the difficulty of target tasks learning as
they are usually at the end of the path.

To tackle these challenges, we proposed a prior information
merged model (PIMM) in this paper, which explicitly models the
logical dependence among tasks with a prior information merged
(PIM) module for multiple sequential dependence task learning in
a curriculum manner. PIMM leverages not only the implicit repre-
sentation but also the explicit premise information. The implicit
representation contains rich task-specific knowledge learned in the
tower network of the former task. The explicit premise information
indicates the probability that the prior positive feedback occurs.

Besides, we introduce a curriculum modeling manner to facilitate
information transfer between multiple tasks. Specifically, the PIM
randomly selects the true label information or the prior task pre-
diction as explicit premise information. Notice that we introduce
a soft sampling strategy following an easy-to-difficult curriculum
paradigm to overcome the error accumulation phenomenon. To
demonstrate the superiority of our proposed PIMM, we conduct
extensive experiments on a publicly available dataset collected
from traffic logs of Taobao’s recommender system 1 and on a real-
world industrial dataset collected from the customer acquisition
campaigns in a large-scale FinTech platform. Furthermore, we also
conduct online experiments to verify the effectiveness of PIMM in
a real-world financial customer acquisition scenario.

2 THE PROPOSED APPROACH
2.1 Problem Formulation
In this paper, we focus on the problem of modeling a collection
of binary classification tasks 𝑇 = {𝑇0,𝑇1, ...,𝑇𝑀 } with sequential
dependence. The corresponding labels of each training sample are
𝑌 = {𝑦1, 𝑦2, ..., 𝑦𝑀 } where M is the number of tasks. Only if 𝑦𝑖 =
1, the latter task’s label 𝑦𝑖+1 might be 1, which means only the
following three situations are valid for any two adjacent tasks: (1)
𝑦𝑖 = 0&𝑦𝑖+1 = 0, (2) 𝑦𝑖 = 1&𝑦𝑖+1 = 0, (3) 𝑦𝑖 = 1&𝑦𝑖+1 = 1.

2.2 The Structure of PIMM

Input Feature

Shared Embedding
Layer

Tower t - 1 Tower t

Attention Layer FC PIM Attention Layer FC PIM

Figure 2: The architecture of PIMM. FC represents a fully-
connected layer. "∥" represents the gradient that is truncated.

We firstly present the overview structure in Figure 2, each fea-
ture field 𝑥𝑖 will be embedded as a low-dimension vector in the
shared embedding layer. Subsequently, all output field vectors are
concatenated and fed to all task-specific towers. Note that the back-
bone of PIMM could be easily extended to more complex structures
such as expert-bottom structures. Besides, the advanced models
for representation learning can also be utilized as the bottom or
tower networks such as graph neural networks[11, 17], feature
interaction models[4, 7, 8], and so on. In this paper, we focus on
the problem of representing and utilizing information about logical
dependence among tasks. For all tasks except the first one, we use
1https://tianchi.aliyun.com/dataset/408
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Figure 3: Prior Information Merged (PIM) Module.

the prior information merged (PIM) module to obtain the trans-
fer information. The PIM first generates an embedding containing
explicit premise information from ground truth or the estimated
prediction of the former task with a mutable probability. Then PIM
merges the explicit information with the transferred hidden vector
that contains implicit information with an addition operation. The
detail of PIM will be described in Section 2.3. Given the output of t-
th task-specific tower network 𝑣𝑡 ∈ R𝑑 and the output of PIM 𝑍𝑚

𝑡−1
which is the prior information merged representation contains the
knowledge about the former task, we employ a self-attention layer
with the residual connection to generate the representation 𝑈𝑡 for
the prediction of task 𝑡 :

𝑈𝑡 = 𝑣𝑡 +
∑︁

a∈{𝑣𝑡 ,𝑍𝑚
𝑡−1 }

𝑤𝑎 ·𝑉 (a) (1)

where 𝑉 is the linear transformation function that projects 𝑣𝑡
to a new d-dimension vector.𝑤𝑎 is the attention weight, which is
calculated as:

𝑤∗
𝑎 =

𝑄 (a) · 𝐾 (a)
√
𝑑

(2)

𝑤𝑎 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑤∗
𝑎) =

exp(𝑤∗
𝑎)∑

a exp(𝑤∗
𝑎)

(3)

where Q and K are linear transformation that project a ∈ {𝑣𝑡 , 𝑍𝑚𝑡−1}
to d-dimension vectors as queries and keys respectively.

Besides being fed to the output layer of task t,𝑈𝑡 will be utilized
to generate the implicit representation 𝐻𝑡 with a fully-connected
layer and be transferred to the subsequent PIM module. Specially,
there is no attention layer for the first task since it has no former
task. Therefore, for the first task, 𝑣0 will be directly fed to the output
layer and 𝐻0 is 𝐹𝐶 (𝑣0).

2.3 Prior Information Merged Module
To leverage the explicit premise information from the former task,
a naive idea is directly transferring the predicted result of (𝑡 − 1)-th
task. However, for some applications such as multi-step conversion
prediction in the FinTech platform, the path of sequential depen-
dence targets is long and the error of estimated probability will be
transferred accumulatively. Especially at the early stage of training,
the optimization for parameters of previous tasks is not converged
yet and the predictions are not accurate enough. Inspired by the con-
cept of Curriculum learning[14], we implement an easy-to-difficult
training strategy in the Prior Information Merged (PIM) Module as
shown in Figure 3. The PIM first calculates the sampling probability
𝑝 according to the current training step. For each training sample
in the batch, PIM randomly selects the label 𝑦𝑡−1 or the predicted
probability ˆ𝑦𝑡−1 of the former task with the sampling probability

of 𝑝 and 1 − 𝑝 respectively. The sampling probability is mutable
during the training process. At the beginning of training, 𝑝 is a large
value and gradually decreases as the training process advances until
𝑝 reaches the set lower limit. The sampling probability 𝑝 can be
formulated as:

𝑝 = max{𝛼 − 𝐸 × 𝑆, 𝛽} (4)
where 𝛼 is the initial value of 𝑝 . 𝐸 = 0, 1, 2, ..., 𝐾 is the current train-
ing epoch. 𝑆 is the decrease speed and 𝛽 ≥ 0 is the set lower limit.
At inference, only the predicted probability ˆ𝑦𝑡−1 can be utilized. In
this way, the PIM tends to select the ground truth when the model
is not well-trained to avoid transferring misleading prior informa-
tion in the beginning. As the training advances and the predictions
of the model becomes accurate, PIM is more likely to choose the
predicted results gradually and thus eliminates the gap between
training and inference. The selected explicit premise information
𝑦∗ ∈ {𝑦𝑡−1, ˆ𝑦𝑡−1} is then transformed into a d-dimension vector
𝑍𝑡−1 with the following operation:

𝑍𝑡−1 = 𝜎 (𝑦∗ ·𝑊 𝑡−1) (5)

where𝑊 𝑡−1 ∈ R1×𝑑 is a trainable variable. To avoid affecting the
upstream tasks learning, we apply the gradient truncation operation
on the selected 𝑦∗. Finally, we obtain the prior information merged
task-specific knowledge 𝑍𝑚

𝑡−1 by adding the transferred implicit
representation 𝐻𝑡−1 from the former task and 𝑍𝑡−1:

𝑍𝑚𝑡−1 = 𝑍𝑡−1 + 𝐻𝑡−1 (6)

The curriculum sequential task modeling strategy makes PIMM
focus on task-specific parameters learning with the accurate prior
information in the beginning and gradually increases the generality
as the sampling probability 𝑝 decreases.

3 EXPERIMENTS
3.1 Datasets and Evaluation Metrics
In the offline experiments, we compare our proposed PIMM model
with several baselines including some MTL models on a publicly
available dataset and an industrial private dataset:

The Ali-CCP dataset: Alibaba Click and Conversion Prediction
dataset[10] consists of over 42 million samples in the training set
and over 43 million samples in the testing set with sequential labels
of click and purchase. Following the previous research [18], we
use the single-values categorical features and randomly retain 10%
samples from the training set as a validation set.

The industrial dataset: We collect logs from historical cam-
paigns from a FinTech platform. The training set contains about
3 million records sampled from 2022/09/01 to 2023/01/04 and the
testing set contains 5.8 million records collected after the training
period. The dataset contains three sequential dependence tasks:
click → conversion → core conversion, where the definition of
core conversion is to invest over 1 thousand CNY in mutual funds
distributed in the platform.

For all models, we report the average AUC and standard devi-
ation (std) over five runs with different random seeds to reduce
randomness.

3.2 Settings
The baseline models are listed as follows:

1916



SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Yunpeng Weng, Xing Tang, Liang Chen, & Xiuqiang He

Table 1: The AUC performance (mean ± std) of different
models on the Ali-CCP dataset.

Model click purchase

shared-bottom 0.6068 ± 0.0008 0.6388 ± 0.0068
ESMM 0.6060 ± 0.0012 0.6417 ± 0.0064
MMoE 0.6072 ± 0.0006 0.6463 ± 0.0062
PLE 0.6059 ± 0.0018 0.6468 ± 0.0086
AITM 0.6072 ± 0.0013 0.6508 ± 0.0028
MNCM 0.6071 ± 0.0011 0.6511 ± 0.0032
PIMM 0.6075 ± 0.0010 0.6561 ± 0.0030‡

‡ indicates statistically significant improvement over the best baseline(p-
value < 0.05).

Shared-Bottom[2]: The Shared-Bottom is a simple MTL struc-
ture. All tasks share the same bottom layers and task-specific towers
are employed for each task individually.

MMoE[9]: The MMoE uses multiple expert networks as the
bottom structure and applies the gate mechanism to integrate the
expert outputs for different tasks.

ESMM[10]: The ESMM transfers the output probability from the
previous task 𝑝𝑡−1 and multiplies it with the estimated conditional
probability 𝑝𝑡 to model the sequential dependence.

PLE[13]: The PLE introduces task-specific experts besides the
shared experts to help mitigate the seesaw phenomenon in MTL.

AITM[18]: The AITM model adaptively transfers implicit repre-
sentation from the former task with the attention mechanism.

MNCM[16]: The MNCM improves the AITM model by utilizing
the task-specific and shared experts pattern.

Following the experimental setting of AITM [18], the embedding
size is set to be 5 and 24 for the experiments on the Ali-CCP dataset
and industrial dataset respectively. All models are trained with
Adam [5] optimizer. We sweep over the learning rate in {0.0005,
0.001, 0.0015,0.002} and select the best-performance parameter for
all models. For the models with shared-bottom structures, the hid-
den layer sizes of each task-specific tower are [128,64,32] for the
Ali-CCP dataset and [256,128,64] for the industrial dataset. For
MNCM and PLE, the number of shared experts is 2 and each task
has two task-specific experts. For the MMoE model, the share ex-
perts number are 4 and 6 for the Ali-CCP dataset and the industrial
dataset respectively. We set 𝛼 = 0.5, 𝑆 = 0.25 , 𝛽 = 0.25 for PIMM
on the Ali-CCP dataset and 𝛼 = 2

3 , 𝑆 = 1
3 , 𝛽 = 0 on the industrial

dataset respectively.

3.3 Results
Offline Results. Generally, the final task in the sequential task
paths is typically the most important for practical applications such
as recommendations and marketing. Therefore, we mainly focus on
the purchase task and core conversion task for the Ali-CCP dataset
and industrial dataset respectively. The experimental results on the
public dataset are shown in Table 1. These results illustrate that our
proposed PIMM significantly outperforms the various state-of-the-
art baseline models in terms of the purchase AUC. In Table 2, we
present the experimental results on the industrial dataset with three
tasks. The PIMM model also achieves significant improvement over

Table 2: The AUC performance (mean ± std) of different
models on the industrial dataset.

Model click conversion core conversion

shared-bottom 0.7397 ± 0.0051 0.7106 ± 0.0082 0.6861 ± 0.0092
ESMM 0.7348 ± 0.0008 0.7224 ± 0.0013 0.6893 ± 0.0033
MMoE 0.7395 ± 0.0010 0.7171 ± 0.0006 0.6907 ± 0.0013
PLE 0.7470 ± 0.0012 0.7309 ± 0.0008 0.7045 ± 0.0036
AITM 0.7372 ± 0.0006 0.7104 ± 0.0011 0.7052 ± 0.0033
MNCM 0.7420 ± 0.0011 0.7237 ± 0.0006 0.7042± 0.0023
PIMM 0.7489 ± 0.0004‡ 0.7296 ± 0.0013 0.7118 ± 0.0035‡

‡ indicates statistically significant improvement over the best baseline(p-value < 0.05).

the baselines in terms of core conversion AUC while maintaining
competitive performance on other tasks. The results demonstrate
the effectiveness of our proposed PIMM in MTL with sequential
dependence tasks.

Online Results. We conduct the online experiment on several
real financial customer acquisition campaigns in different periods.
For each campaign, we randomly take 50% of the traffic as the
control group and 50% of the traffic as the experimental group
and ensure two groups are homogeneous. Each model predicts the
probability of users’ core conversion, and users with the highest po-
tential will be impressed with campaign ads. For a fair comparison,
the number of impressions is equal for each group, which means the
marketing resources consumed are the same. Figure 4 illustrates the
online testing results of three different marketing campaigns. Note
that each campaign lasts for 5 days. We find that PIMM constantly
increases the core conversion rate compared with the baseline in all
online campaigns. The online results further verify the superiority
of the PIMM in modeling the sequential dependence among tasks.

1 2 3 4 5
Day

5%

10%

15%

20%

25%

Re
la

tiv
e 

im
pr

ov
em

en
t

Campaign A
Campaign B
Campaign C

Figure 4: The relative improvement of our PIMM compared
to baseline in terms of the core conversion customer number.

4 CONCLUSION
In this paper, we propose a novel Prior Information Merged model
for multi-task learning with sequential dependence relationships
among tasks. The Prior Information Merged module flexibly gener-
ates prior information from the ground truth or predictions of the
former task. The dynamic sampling mechanism alleviates the error
accumulation phenomenon and also guarantees the generalization
ability of PIMM. With the PIM module, PIMM can both leverage
the implicit knowledge learned in the task-specific tower of the
previous task and the explicit prior knowledge about the dependent
task. We conduct extensive offline and online experiments to verify
the superiority of PIMM compared with various state-of-the-art
multi-task learning models. Besides, the PIM module can be flexibly
applied in other advanced model structures.
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