
Self-Sampling Training and Evaluation
for the Accuracy-Bias Tradeoff

in Recommendation

Dugang Liu1,2, Yang Qiao3, Xing Tang3, Liang Chen3, Xiuqiang He3,
Weike Pan1(B), and Zhong Ming1(B)

1 College of Computer Science and Software Engineering, Shenzhen University,
Shenzhen, China

{panweike,mingz}@szu.edu.cn
2 Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ),

Shenzhen, China
3 FIT, Tencent, Shenzhen, China

{sunnyqiao,shawntang,leocchen,xiuqianghe}@tencent.com

Abstract. Research on debiased recommendation has shown promising
results. However, some issues still need to be handled for its application
in industrial recommendation. For example, most of the existing methods
require some specific data, architectures and training methods. In this
paper, we first argue through an online study that arbitrarily removing
all the biases in industrial recommendation may not consistently yield a
desired performance improvement. For the situation that a randomized
dataset is not available, we propose a novel self-sampling training and
evaluation (SSTE) framework to achieve the accuracy-bias tradeoff in
recommendation, i.e., eliminate the harmful biases and preserve the ben-
eficial ones. Specifically, SSTE uses a self-sampling module to generate
some subsets with different degrees of bias from the original training and
validation data. A self-training module infers the beneficial biases and
learns better tradeoff based on these subsets, and a self-evaluation mod-
ule aims to use these subsets to construct more plausible references to
reflect the optimized model. Finally, we conduct extensive offline experi-
ments on two datasets to verify the effectiveness of our SSTE. Moreover,
we deploy our SSTE in homepage recommendation of a famous financial
management product called Tencent Licaitong, and find very promising
results in an online A/B test.

Keywords: Debiased recommendation · Self-sampling · Self-training ·
Self-evaluation

1 Introduction

A user will inevitably suffer from various biases during the interaction with
a recommender system, which will lead to inherent variability in the feedback
data. As a result, the collected data may not be able to reflect a user’s true
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Wang et al. (Eds.): DASFAA 2023, LNCS 13946, pp. 580–592, 2023.
https://doi.org/10.1007/978-3-031-30678-5_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-30678-5_44&domain=pdf
https://doi.org/10.1007/978-3-031-30678-5_44

Self-Sampling Training and Evaluation 581

preferences [11]. Ignoring these biases will allow a recommendation model trained
based on the feedback data to inherit and even amplify their influence, which
is not conducive to the long-term and healthy development of a recommender
system. Therefore, how to reasonably and effectively mitigate the bias problem
in the feedback data is an important challenge.

Existing debiased recommendation methods can be mainly divided into two
lines, including debiased recommendation with a randomized dataset and with-
out a randomized dataset. A randomized dataset is collected with a specific
uniform policy instead of a recommendation model, which can be regarded as a
good unbiased proxy due to the random selection operation used for item assign-
ment [2]. With the unbiased information contained in a randomized dataset, the
first line focuses on designing different joint training modules to transfer them to
a recommendation model trained on a biased feedback data [2,3,9]. In the case
where a randomized dataset is unavailable, the second line mainly ensures the
unbiasedness of an optimization objective and guides the design of the model
architecture by introducing some theoretical framework [11,15,19]. Although the
existing debiased recommendation methods have shown promising results, their
application in an industrial recommendation is still lacking sufficient insight since
most of them require some specific data, architectures, and training methods.

In particular, an important question that is rarely considered and answered
is whether removing all the biases in an industrial recommendation is a desirable
goal. To gain an initial insight into this problem, we first conduct a three-week
online study in a real recommendation scenario, where an approximate uniform
policy is deployed for comparison with the base model. This recommendation
scenario comes from the homepage recommendation of Tencent Licaitong, which
is one of the largest financial recommendation scenarios in China and its display
homepage is shown on the left side of Fig. 1. Note that more information about
this scenario and the evaluation metric COPM can be found in Sect. 4.4. From
the right side of Fig. 1, we can find that the uniform policy will bring an expected
performance improvement in the early stage, and this may be due to the unex-
pected recommendation brought by the random selection operation. However,
in the later stage, the advantage of the uniform policy is not maintained, and
degenerates to be similar to the base model. We argue that this may be due
to the fact that the beneficial biases that improve the performance of the base
model are removed in the uniform policy, e.g., a high-yield fund product should
naturally receive more exposure in this recommendation scenario. Overall, this
means that arbitrarily removing all the biases in an industrial recommendation
may not consistently yield a desired performance improvement.

Therefore, in this paper, we propose to use an accuracy-bias tradeoff instead
of removing all the biases. We then propose a simple but effective self-sampling
training and evaluation (SSTE) framework to achieve this goal, which preserves
the beneficial biases while removing the harmful ones. Specifically, our SSTE
includes three customized modules: 1) a self-sampling module generates some
corresponding auxiliary subsets with different degrees of bias from the original
training set and validation set; 2) a self-training module combines the original
training set and the auxiliary subsets for joint learning to infer the beneficial

582 D. Liu et al.

Fig. 1. A recommendation scenario on the homepage of Tencent Licaitong, and the
results of a three-week online study conducted. The contents marked with the red boxes
are the recommended items. Note that due to confidentiality, we have transformed the
actual COPM values. (Color figure online)

biases and achieve a better accuracy-bias tradeoff; 3) a self-evaluation module
combines the original validation set and the auxiliary subsets to construct a more
reasonable reference to better reflect the optimized model offline. We conduct
extensive offline experiments on a public dataset and a real product dataset to
verify the effectiveness of our SSTE, including unbiased evaluation and compat-
ibility analysis. In addition, we also show the strength of our SSTE in an online
A/B test.

2 Related Work

In this section, we briefly review some related works on two research topics,
including debiased recommendation and debiased evaluation.

Debiased Recommendation. According to the types of feedback data
involved, existing debiased recommendation methods can be mainly divided
into two categories, i.e., debiased recommendation with a randomized dataset
and without a randomized dataset. The former aims to introduce a random-
ized dataset as an unbiased proxy, and then various ways of its joint training
with the original biased feedback data can be designed to exploit the guidance
of this unbiased information [2,3,9]. The latter considers mitigation of the bias
problem in the case where a randomized dataset is not available. The main
techniques include assuming and modeling the generation mechanism between a
specific bias and some certain features [12,13], or introducing some theoretical
frameworks to construct some corresponding unbiased estimators for this bias
problem [11,15,18,19]. However, most of the existing methods require some spe-
cific data, architectures and training methods, which hinders the full exploration
and sufficient insights for debiased recommendation in an industrial recommen-
dation. Our SSTE aims to bridge the gap in this direction.

Debiased Evaluation. Due to the inherent biases in the feedback data, tradi-
tional evaluation metrics may not reflect the real performance of a recommenda-

Self-Sampling Training and Evaluation 583

tion model and will lead to a discrepancy between offline and online evaluations.
To solve this problem, most previous works mainly consider from two aspects
of measurement design and sample design. The former aims to design some
corresponding unbiased versions for traditional metrics or propose some new
unbiased evaluators [5,8,20], while the latter focuses on designing some meth-
ods that can construct an unbiased validation set [2,7]. However, most existing
methods are inconvenient to application in an industrial recommendation due
to the uncontrollable potential risks, i.e., evaluation errors. Different from them,
our SSTE proposes a simple and effective self-evaluation method with the man-
ageable potential risks.

3 The Proposed Framework

In this paper, we focus on alleviating the bias problem in implicit feedback
without a randomized dataset. Suppose that the training set Dtr = {(xi, yi)}mi=1

with xi ∈ X and yi ∈ Y is drawn from a latent distribution P (x, y), where
m is the number of training instances. X = X1 × · · · × Xd is a d-dimensional
feature space, and Y = {0, 1} is a label space. And the validation set Dval =
{(xj , yj)}nj=1 is drawn from a latent distribution Q(x, y), where n is the number
of validation instances. Note that y = 1 and y = 0 indicate that a training or
validation instance is a positive feedback and a negative feedback, respectively.

3.1 The Accuracy-Bias Tradeoff

Since the results in Fig. 1 suggest that arbitrarily removing all the biases in
an industrial recommendation may not be an ideal choice, we propose a new
accuracy-bias tradeoff goal to obtain a more desirable performance improvement,
where the key idea is to treat all the biases in the feedback data as a combi-
nation of harmful and beneficial ones. To facilitate the understanding of the
difference between our goal and the existing works, we give the causal diagrams
of traditional recommendation, debiased recommendation and the proposed new
goal in Fig. 2, respectively. We use U , V , M , C, A, and Y to denote the users,
items, true matching preferences (i.e., U ’s specific preference for V), beneficial
bias effects (i.e., the preference offset due to the beneficial biases such as high
exposure bias for high-yield funds), harmful bias effects (i.e., the preference offset
due to the harmful biases, such as position bias), and feedback labels, respec-
tively. As shown in Figs. 2(a) and 2(b), traditional recommendation methods
will encode the harmful bias effects, and debiased recommendation methods will
remove both the beneficial and harmful bias effects. From Fig. 2(c) we can see
that unlike them, our goal is to remove the harmful bias effects while retaining
the beneficial bias effects.

3.2 Architecture

We propose a simple but effective self-sampling training and evaluation (SSTE)
framework to achieve the desired accuracy-bias tradeoff, where its overall archi-
tecture is shown in Fig. 3. Given a training set Dtr and a validation set Dval, a

584 D. Liu et al.

Fig. 2. Causal diagrams w.r.t. (a) traditional recommendation, (b) debiased recom-
mendation, and (c) the proposed solution with accuracy-bias tradeoff, where U , V , M ,
C, A, and Y denote the users, items, true matching preferences, beneficial bias effects,
harmful bias effects, and feedback labels, respectively.

self-sampling module constructs a set of auxiliary subsets with different degrees
of bias based on Dtr and Dval, i.e., Atr = {D̂i

tr}
T1
i=1 and Aval = {D̂i

val}
T2
i=1. D̂i

tr is
an auxiliary subset sampled from Dtr based on a specific strategy, and T1 is the
number of auxiliary subsets equipped for Dtr. D̂i

val and T2 are similarly defined
for Dval. Then, a self-training module receives Dtr and Atr, and updates a rec-
ommendation model Θ̂ by jointly training with some shared parameters. The
updated model Θ̂ is then passed to the self-evaluation module. And after com-
bining Dval and Aval, the defined new evaluation method is used to obtain the
performance corresponding to the current training iteration. If the convergence
condition is not met, the self-training module and the self-evaluation module
continue to be executed alternately. And once it is met, the optimized recom-
mendation model Θ̂∗ will be output.

Fig. 3. The overall architecture of the proposed SSTE, where the core components are
a self-sampling module, a self-training module and a self-evaluation module.

Self-Sampling Training and Evaluation 585

3.3 Training

Next, we describe each module in detail based on the training process.

The Self-SamplingModule.We propose an auxiliary subset sampling method
based on truncated inverse propensity score (tIPS). Specifically, taking the train-
ing instances as an example, we first obtain the sampled probability of each
instance p(xi) by some existing IPS estimators in debiased recommendation,
where a higher p(xi) means this sample is more important for debiasing. We then
choose a set of different truncation thresholds {εitr}

T1
i=1 and use each threshold sep-

arately to adjust the obtained p(xi), i.e., keep p(xi) when p(xi) < εitr, otherwise
modify p(xi) to 1. This means that we control the level of debiasing by applying
more protection to different proportions of important samples. Finally, based on
the modified sampling probabilities, we can obtain a set of auxiliary subsets of
Dtr, i.e., Atr = {D̂i

tr}
T1
i=1, where each auxiliary subset corresponds to a trunca-

tion threshold. Similarly, by setting {εival}
T2
i=1 for the validation instances, we can

obtain Aval = {D̂i
val}

T2
i=1 corresponding to Dval. The idea behind this sampling

operation is to simulate the auxiliary subsets with different degrees of bias and dif-
ferent sets of biases based on the feedback data itself. Note that the self-sampling
module can be executed only once as a preprocessing operation, or it can be re-
executed after each round of training. We give an example of the sampling process
in Fig. 4.

Fig. 4. The schematic diagram of a sampling process.

The Self-Training Module. In order to combine Dtr and Atr to infer the ben-
eficial bias information and constrain the model to achieve a better accuracy-
bias tradeoff, we can use any model architecture with some shared parame-
ters for training. Formally, let Θ̃ = {θ̃, θs} be the model parameters related to
Dtr, and Θ̂ = {θ̂, θs} be the model parameters related to Atr, where θs is the
shared parameter. The final optimization objective function of our SSTE can be
expressed as follows,

min
Θ̃,Θ̂

LSSTE = LDtr

(
f

(
Θ̃,xi

)
, yi

)
+LAtr

(
g

(
Θ̂,xj

)
, yj

)
+λ‖Θ̃‖+λ‖Θ̂‖, (1)

where (xi, yi) ∈ Dtr, (xj , yj) ∈ Atr, f(·) and g(·) are the mapping functions,
and λ and ‖·‖ are the tradeoff weight and the regularization terms, respectively.

586 D. Liu et al.

Note that we will adopt the model Θ̂ during the inference phase. An intuitive
interpretation for Eq. (1) is that joint training on data that simulates different
environments forces the model to implicitly distinguish all the biases, where
those biases that reach more consensus and encode more information are more
likely to be beneficial, since the performance gains they bring are more robust
across different environments.

The Self-Evaluation Module. To better capture the optimal model Θ̂∗ offline,
we propose a bias-robust evaluation method. Specifically, let the performance of
the model Θ̂ on Dval and D̂i

val be e(Dval) and e(D̂i
val), respectively, at the i-th

training iteration, where e(·) denotes the main metric adopted. Combining Dval

and Aval = {D̂i
val}

T2
i=1, we can compute the maximum difference α in perfor-

mance between any two sets,

α = max{max |e(Dval) − e(D̂i
val)|,max |e(D̂i

val) − e(D̂j
val|)}, (2)

where | · | denotes an absolute value operation. Since Dval and Aval are simulated
for different bias environments, and an ideal optimization model should have a
stable performance in different environments, an intuitive idea is that the model
with a smaller value of α is better. Finally, depending on whether e(·) is a higher-
better metric, we use e(Dval)−α or e(Dval)+α as a modified performance result
to better capture the optimal model Θ̂∗ offline with a manageable risk.

3.4 Remarks

IPS-based methods are an important branch in debiased recommendation, but
the performance of these methods heavily depends on the estimation accuracy
of IPS. Different from them, our SSTE only uses IPS as a reference to simulate
different bias environments, and thus has a greater tolerance for the estimation
accuracy of IPS. Our SSTE can be applied to many industrial recommendation
scenarios because it does not depend on a specific data, architecture or training
method, and is compatible with most industrial recommendation models. Fur-
thermore, since the sampled auxiliary subset usually has a much smaller size
than the original data, i.e., |D̂i

tr| % m and |D̂i
val| % n, our SSTE does not

increase the time and resource overhead too much.

4 Experiments

In this section, we first introduce the experimental setup, and then conduct
extensive empirical studies and show the effectiveness of our SSTE.

4.1 Experimental Setup

Datasets.We use a very common benchmark dataset and a real product dataset
in our experiments, i.e., Yahoo! R3 [13] and Product. Following the settings of
most previous works [3,10], for Yahoo! R3, we first binarize each rating, where

Self-Sampling Training and Evaluation 587

those greater than 3 are denoted as y = 1, and the rest as y = 0. For the
biased feedback subset in Yahoo! R3, we randomly divide each user’s feedback
into training and validation sets with a ratio of 8 : 2. The randomized feedback
subset in Yahoo! R3 is all used for unbiased evaluation, since it can be considered
as the feedback generated by an unbiased scene. Product is a subset sampled
from the log data collected in Tencent Licaitong’s homepage recommendation
business, involving about 2.8 million users, 560 items, and 9.6 million feedback.
According to the different properties of the feedback data, we divide them into
a biased feedback subset and a randomized feedback subset. After chronological
ordering of the biased feedback subset, we obtain the training and validation
sets in a ratio of 8 : 2. Similarly, the whole randomized feedback subset is used
for unbiased evaluation. The statistics of the datasets are shown in Table 1.

Table 1. Statistics of the datasets. P/N represents the ratio between the numbers of
positive and negative feedback.

Yahoo! R3 Product

#Feedback P/N (%) #Feedback P/N (%)

training set 254,713 67.02 7,133,519 5.21

validation set 56,991 67.00 1,633,716 5.20

test set 54,000 9.64 870,158 4.34

Evaluation Metrics. For all the experiments, we employ four evaluation met-
rics that are widely used in recommender systems, including the area under the
ROC curve (AUC), precision (P@K), recall (R@K) and normalized discounted
cumulative gain (nDCG). We report the results of P@K and R@K when K is 5
and 10, and the results of nDCG when K is 50. Since AUC is one of the most
common metrics in an industrial recommendation, we choose it as our main eval-
uation metric, which is used to search for the best hyperparameters for all the
candidate methods.

Baselines. To conduct a comprehensive evaluation of our SSTE, in the experi-
ments, we select a set of representative debiased recommendation methods based
on only a biased data (i.e., without a randomized dataset), including IPS [16],
SNIPS [17], CVIB [18], AT [14], Rel [15] and DIB [11]. Furthermore, similar to
most of the previous works, we adopt matrix factorization (MF) [6] and neu-
ral collaborative filtering (NCF) [4] as two backbone models. Therefore, each
of these baselines has two corresponding versions based on different backbones.
Note that we do not include CausE [2], KDCRec [9] and AutoDebias [3] because
they require a randomized dataset for bias reduction.

Implementation Details. All the candidate methods have been implemented
on TensorFlow. We set the optimizer to Adam, and use the hyperparameter
search library Optuna [1] to speed up the hyperparameter search process with
AUC as the target on the validation set. For our SSTE, we set both the num-
ber of self-samples T1 and T2 to 1, considering the tradeoff of performance and

588 D. Liu et al.

resource overhead. To avoid overfitting to the training set, we also employ an
early stopping setting with a patience of 5. We tune the embedding dimen-
sion, the regularization weight, the batch size and the learning rate in the
range of {5, 10, · · · , 195, 200},

{
1e−5, 1e−4, · · · , 1e−1, 1

}
,

{
27, 28, · · · , 213, 214

}

and
{
1e−4, 5e−4 · · · 5e−2, 1e−1

}
, respectively. Note that the source codes are

available at https://github.com/dgliu/DASFAA23 SSTE.

4.2 Overall Results

The comparison results between our SSTE and the baselines are shown in
Table 2. When using matrix factorization as the backbone model, as shown in
the upper part of Table 2, our SSTE consistently outperforms all the baselines
on all the metrics across the two datasets of Yahoo! R3 and Product. We can
also observe that most debiasing methods can improve the unbiased performance
of recommendation models to some extent, among which Rel and DIB are the
two most competitive baselines. Compared with them, our SSTE can benefit
from self-training and self-evaluation modules to achieve a better result. When
using neural collaborative filtering as the backbone model, as shown in the lower
part of Table 2, our SSTE outperforms all the baselines in most cases. We can
find that although our SSTE is slightly weaker than DIB on P@10 and R@10
on Product, it still has a clear advantage on other metrics, especially the main
metric AUC. This may be due to the impact caused by only considering AUC
in parameter tuning. Overall, our SSTE has a better unbiased performance.

Table 2. Comparison results of unbiased evaluation, where the best results and the
second best results are marked in bold and underlined, respectively. AUC is the main
evaluation metric.

Yahoo! R3 Product

Method AUC nDCG P@5 P@10 R@5 R@10 AUC nDCG P@5 P@10 R@5 R@10

MF .7101 .0447 .0080 .0074 .0236 .0446 .8477 .0696 .0145 .0180 0687 .1707

IPS-MF .7128 .0313 .0033 .0035 .0088 .0202 .8507 .0684 0139 .0180 .0663 .1717

SNIPS-MF .7101 .0334 .0049 .0048 .0131 .0271 .8509 .0684 .0140 .0181 .0670 .1717

CVIB-MF .7048 .0479 .0089 .0069 .0267 .0413 .8279 .0705 .0146 .0185 .0695 .1761

AT-MF .7314 .0663 .0108 .0100 .0373 .0676 .8389 .0649 .0137 .0169 .0649 1595

Rel-MF .7440 .0835 .0151 .0131 .0508 .0859 .8519 .0785 .0177 .0199 .0838 .1882

DIB-MF .7547 .0920 .0169 .0145 .0538 .0930 .8510 .0781 .0159 .0202 .0764 .1922

SSTE-MF .7591 .0981 .0181 .0153 .0612 .0999 .8525 0878 .0222 .0211 .1062 .2010

Yahoo! R3 Product

Method AUC nDCG P@5 P@10 R@5 R@10 AUC nDCG P@5 P@10 R@5 R@10

NCF .7244 .0294 .0022 .0026 .0068 .0147 .7930 .0795 .0192 .0195 .0907 .1845

IPS-NCF .7229 .0291 .0031 .0036 .0084 .0199 .8024 .0802 .0187 .0188 .0886 .1781

SNIPS-NCF .7224 .0314 .0034 .0034 .0091 .0183 .8026 .0869 .0195 .0206 .0921 .1945

CVIB-NCF .7250 .0393 .0053 .0044 .0150 .0250 .8034 .0776 .0170 .0193 .0805 .1831

AT-NCF .7167 .0351 .0056 .0048 .0157 .0271 .7967 .0741 .0181 .0179 .0856 .1688

Rel-NCF .6895 .0505 .0083 .0073 .0246 .0451 .7970 .0827 .0183 .0198 .0869 .1880

DIB-NCF .7454 .0671 .0114 .0096 .0365 .0602 .8049 .1011 .0233 .0241 .1105 .2293

SSTE-NCF .7561 .0696 .0115 .0101 .0370 .0638 .8061 .1033 .0247 .0228 .1175 .2171

https://github.com/dgliu/DASFAA23_SSTE

Self-Sampling Training and Evaluation 589

4.3 Compatibility Analysis

As described in Sect. 3, since our SSTE does not depend on a specific archi-
tecture or training method, it can be easily integrated with existing debiased
recommendation methods and traditional recommendation methods. To verify
the compatibility of our SSTE, in our experiments, we integrate it with all the
baselines and compare it with the original baselines after re-searching for the
best hyperparameters. We report the results on Yahoo! R3 in Fig. 5. We can find
that our SSTE can bring a significant improvement over the unbiased perfor-
mance of different baselines in most cases. In particular, we can observe that the
positive effect of our SSTE will be weakened on the debiased recommendation
method based on inverse propensity score (IPS). This may be due to the fact
that the inaccurate estimation of IPS would bring an irreconcilable hurt to a
recommendation model.

Fig. 5. Recommendation results of our SSTE with different baselines on Yahoo! R3.

4.4 Online A/B Test

Finally, we deploy our SSTE in Tencent Licaitong, which is a large-scale inter-
net financial platform dedicated to providing high-quality fund sales services for
users. In this platform, there are tens of millions of active users every day, and
a large number of feedback logs are generated and recorded. We conduct online
A/B test for one month in the homepage recommendation scenario, which is the
first page after user log in. In this recommendation scenario, a set of funds will
be recommended to the user, and the user can perform some related operations,
such as skip, click and purchase. The display page is shown in the left side of
Fig. 1. The base model compared in the online test is a carefully tuned deep
multi-task model in which clicks, conversions, and purchase amounts are pre-
dicted separately. We deploy SSTE on the same architecture, and both models
are trained over the same training dataset, which contain more than 300 million
logged feedback spanning two months. For online serving, 10% users are ran-
domly selected as the experimental group and are served by SSTE, while another

590 D. Liu et al.

30% users are in the control group for the base model. Different from the evalua-
tion metrics adopted in offline experiments, we introduce three online evaluation
metrics that are more concerned in financial recommendation, i.e., total clicks
per mille (CLPM), total conversions per mille (COPM) and purchase amount
per mille (PAPM). Specifically, CLPM, COPM and PAPM can be calculated by

Total Clicks
Total Impressions × 1000, Total Conversions

Total Impressions × 1000 and Purchase Amount
Total Impressions × 1000,

respectively. The online A/B test results are shown in Fig. 6. We can find that
our SSTE can bring a steady improvement on the three evaluation metrics. Over-
all, our SSTE can achieve an average improvement of 3.75%, 7.20% and 12.11%
on CLPM, COPM and PAPM, respectively, in the whole online A/B test. This
further demonstrates the effectiveness of our SSTE.

Fig. 6. The improvement of our SSTE compared with the base model in the online
A/B test, including total clicks per mille (CLPM), total conversions per mille (COPM)
and purchase amount per mille (PAPM).

5 Conclusions

In this paper, we first show through an online study that blindly removing all
biases in an industrial recommendation application may not consistently yield
a desired performance improvement. To achieve a better accuracy-bias tradeoff,
we propose a simple yet effective self-sampling training and evaluation (SSTE)
framework to preserve the beneficial biases while removing the harmful ones. Our
SSTE contains three new modules, i.e., a self-sampling module constructs debi-
ased subsets for training and validation, a self-training module aims to jointly
learn the accuracy-bias tradeoff based on the original training data and debiased
subset, and a self-evaluation module aims to capture an optimal model offline

Self-Sampling Training and Evaluation 591

based on the original validation data and debiased subsets. We conduct exten-
sive experiments on a public dataset and a real product dataset, and find that
our SSTE can effectively improve the unbiased performance of the recommenda-
tion models, and is also of good compatibility. Finally, our SSTE demonstrates
a steady improvement on core evaluation metrics in an online A/B test.

Acknowledgements. We thank the support of National Natural Science Foundation
of China Nos. 61836005, 62272315 and 62172283.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation
hyperparameter optimization framework. In: SIGKDD, pp. 2623–2631 (2019)

2. Bonner, S., Vasile, F.: Causal embeddings for recommendation. In: RecSys, pp.
104–112 (2018)

3. Chen, J., et al.: AutoDebias: Learning to debias for recommendation. In: SIGIR,
pp. 21–30 (2021)

4. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: TheWebConf, pp. 173–182 (2017)

5. Jadidinejad, A.H., Macdonald, C., Ounis, I.: The simpson’s paradox in the offline
evaluation of recommendation systems. ACM TOIS 40(1), 1–22 (2021)

6. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 8, 30–37 (2009)

7. Liang, D., Charlin, L., Blei, D.M.: Causal inference for recommendation. In: Work-
shop on Causation: Foundation to Application co-located with the 32nd Conference
on Uncertainty in Artificial Intelligence (2016)

8. Lim, D., McAuley, J., Lanckriet, G.: Top-N recommendation with missing implicit
feedback. In: RecSys. pp. 309–312 (2015)

9. Liu, D., Cheng, P., Dong, Z., He, X., Pan, W., Ming, Z.: A general knowledge
distillation framework for counterfactual recommendation via uniform data. In:
SIGIR, pp. 831–840 (2020)

10. Liu, D., Cheng, P., Zhu, H., Dong, Z., He, X., Pan, W., Ming, Z.: Mitigating
confounding bias in recommendation via information bottleneck. In: RecSys. pp.
351–360 (2021)

11. Liu, D., et al.: Debiased representation learning in recommendation via information
bottleneck. In: ACM TORS (2022)

12. Liu, D., Lin, C., Zhang, Z., Xiao, Y., Tong, H.: Spiral of silence in recommender
systems. In: WSDM, pp. 222–230 (2019)

13. Marlin, B.M., Zemel, R.S.: Collaborative prediction and ranking with non-random
missing data. In: RecSys, pp. 5–12 (2009)

14. Saito, Y.: Asymmetric tri-training for debiasing missing-not-at-random explicit
feedback. In: SIGIR, pp. 309–318 (2020)

15. Saito, Y., Yaginuma, S., Nishino, Y., Sakata, H., Nakata, K.: Unbiased recom-
mender learning from missing-not-at-random implicit feedback. In: WSDM, pp.
501–509 (2020)

16. Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommen-
dations as treatments: debiasing learning and evaluation. In: ICML, pp. 1670–1679
(2016)

592 D. Liu et al.

17. Swaminathan, A., Joachims, T.: The self-normalized estimator for counterfactual
learning. In: NeurIPS, pp. 3231–3239 (2015)

18. Wang, Z., Chen, X., Wen, R., Huang, S.L., Kuruoglu, E.E., Zheng, Y.: Informa-
tion theoretic counterfactual learning from missing-not-at-random feedback. In:
NeurIPS, pp. 1854–1864 (2020)

19. Wang, Z., He, Y., Liu, J., Zou, W., Yu, P.S., Cui, P.: Invariant preference learning
for general debiasing in recommendation. In: SIGKDD, pp. 1969–1978 (2022)

20. Yang, L., Cui, Y., Xuan, Y., Wang, C., Belongie, S., Estrin, D.: Unbiased offline
recommender evaluation for missing-not-at-random implicit feedback. In: RecSys,
pp. 279–287 (2018)

