
55

Mobile App Cross-Domain Recommendation
with Multi-Graph Neural Network

YI OUYANG and BIN GUO, Northwestern Polytechnical University

XING TANG and XIUQIANG HE, Noah’s Ark Lab, Huawei

JIAN XIONG, Tencent

ZHIWEN YU, Northwestern Polytechnical University

With the rapid development of mobile app ecosystem, mobile apps have grown greatly popular. The explosive

growth of apps makes it difficult for users to find apps that meet their interests. Therefore, it is necessary to

recommend user with a personalized set of apps. However, one of the challenges is data sparsity, as users’

historical behavior data are usually insufficient. In fact, user’s behaviors from different domains in app store

regarding the same apps are usually relevant. Therefore, we can alleviate the sparsity using complementary

information from correlated domains. It is intuitive to model users’ behaviors using graph, and graph neu-

ral networks have shown the great power for representation learning. In this article, we propose a novel

model, Deep Multi-Graph Embedding (DMGE), to learn cross-domain app embedding. Specifically, we first

construct a multi-graph based on users’ behaviors from different domains, and then propose a multi-graph

neural network to learn cross-domain app embedding. Particularly, we present an adaptive method to balance

the weight of each domain and efficiently train the model. Finally, we achieve cross-domain app recommen-

dation based on the learned app embedding. Extensive experiments on real-world datasets show that DMGE

outperforms other state-of-art embedding methods.

CCS Concepts: • Information systems → Recommender systems; • Computing methodologies →

Neural networks; Multi-task learning;

Additional Key Words and Phrases: Mobile app, cross-domain recommendation, graph neural network, multi-

task learning, transfer learning

ACM Reference format:

Yi Ouyang, Bin Guo, Xing Tang, Xiuqiang He, Jian Xiong, and Zhiwen Yu. 2021. Mobile App Cross-Domain

Recommendation with Multi-Graph Neural Network. ACM Trans. Knowl. Discov. Data 15, 4, Article 55 (April

2021), 21 pages.

https://doi.org/10.1145/3442201

Xing Tang is the co-first author. This work was done when he worked at Tencent.

Xiuqiang He, this work was done when he worked at Tencent.

This work was partially supported by the National Key R&D Program of China (2017YFB1001800), the National Science

Fund for Distinguished Young Scholars (62025205), and the National Natural Science Foundation of China (No. 61960206008,

61772428, and 61725205).

Authors’ addresses: Y. Ouyang, B. Guo (corresponding author), and Z. Yu, Northwestern Polytechnical University, No. 127,

Youyi-West Rd., Xi’an, Shaanxi, 710072, China; emails: ouyangyi@mail.nwpu.edu.cn, {guob, zhiwenyu}@nwpu.edu.cn; X.

Tang and X. He, Noah’s Ark Lab, Huawei, Wuhe Avenue, Shenzhen, Guangdong, 518129, China; emails: tangxing01@

hotmail.com, hexiuqiang1@huawei.com; J. Xiong, Tencent, No. 10000, Shennan Avenue, Shenzhen, Guangdong, 518057,

China; email: janexiong@tencent.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1556-4681/2021/04-ART55 $15.00

https://doi.org/10.1145/3442201

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

https://doi.org/10.1145/3442201
mailto:permissions@acm.org
https://doi.org/10.1145/3442201
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3442201&domain=pdf&date_stamp=2021-04-18

55:2 Y. Ouyang et al.

1 INTRODUCTION

Recently, with the rapid development of mobile internet technology, as well as the widespread

adoption of smartphones, mobile apps have grown greatly popular, and become the indispensable

companions in people’s daily lives. The emergence of mobile apps has changed people’s lifestyles,

including work, socialize, entertainment, and consumption, and made our life more intelligent and

convenient.

Mobile app stores [11], such as Google Play and Apple App Store, provide a large number of

mobile apps to meet the need of different users. However, the explosive growth of mobile apps with

diverse categories and functionalities makes it difficult for users to find apps that are relevant to

their interests from the huge amount of apps. Therefore, it is significant and necessary to provide

accurate mobile app recommendation for users, and it is helpful to understand user preferences

and improve user experience. Besides, accurate recommendation of mobile app will improve the

popularity of mobile apps, promote the app economy, and bring the economic benefits to app

developers [28, 29].

There are some recent studies about the mobile app recommendation, which can be mainly

divided into three categories: Context-aware app recommendation [16, 47], which aims to use the

current mobile context information (e.g., time and location) of users to facilitate the mobile app

recommendation. Privacy protection-based app recommendation [22, 46], which aims to protect user

privacy in mobile app recommendation, as mining and understanding user preferences may also

leak user privacy information. Cold-start app recommendation [21], which aims to recommend

newly released apps to users, as newly released apps may not have user ratings and lead to the

cold-start problem. These works don’t focus on leveraging users’ behaviors in mobile app store

(i.e., users’ app download records) to recommend personalized mobile apps to users. Besides, there

are usually a relative small portion of active users in mobile app store, and a majority of non-

active users often download only a small number of apps, users’ behavior data are thus lacking or

insufficient, which makes it difficult to accurately recommend personalized apps to users [37].

In fact, though data from a single domain are sparse, user behaviors from correlated domains

with the same apps are usually complementary [48]. In the mobile app store, there are two ways

users interact (e.g., download) with apps. One is downloading apps recommended on the homepage

(or category page, etc.) of app store (i.e., recommendation domain), and the other is by searching

(i.e., search domain). Specifically, search domain refers to the search page of app store. Users can

search and download apps directly in this domain. Recommendation domain refers to the home-

page (or category page, etc.) of app store. When users search, click, or download apps, the app store

can record users’ long-term behaviors, and then recommends related apps on the homepage based

on users’ historical behaviors. User behaviors in search domain reflect user’s current needs or in-

tention, while that in recommendation domain reflect user’s relative general interests. Leveraging

the interaction data from search domain can improve the performance of recommendation. On

the other hand, interaction data from recommendation domain can also help to explore user’s per-

sonalized interests and thus optimizing the ranking in search domain. Thus, the information from

recommendation and search domain are complementary, and we are motivated to leverage the

complementary information from correlated domains in mobile app store to alleviate the sparsity.

Cross-domain recommender systems (RSs) [3] aim to fuse information from correlated domains

to improve the performance of recommendation. Based on the information shared by different

domains, existing works on cross-domain recommendation mainly fall into two categories, i.e.,

user-shared and item-shared. In user-shared cross-domain recommendation [14], user embeddings or

profiles are usually shared across domains. However, user information in different domains may

not be directly accessible due to privacy protection or the absence of user profiles, thus it is difficult

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:3

to directly obtain the shared user information. In item-shared cross-domain recommendation [24,

45], matrix factorization (MF) techniques [19, 31] are often used to factorize user-item interaction

matrix into user and item embeddings, then item embeddings are shared or transferred across

domains. However, these works only consider the user-item interaction, while ignore the item

dependency (i.e., the item co-occurrences in users’ behaviors). The item1 dependency is also useful

to capture item-item similarity and reflect users’ preferences [36]. Thus, we are motivated to learn

cross-domain app embedding based on the app co-occurrences in users’ behaviors, and then use

the cross-domain app embedding to achieve cross-domain app recommendation.

The key is to generate cross-domain app embedding. However, it is challenging to learn cross-

domain app embedding due to the following three key issues.

—How to correlate different domains in mobile app store, and what information about mobile

apps should be transferred (or shared) across domains?

—Though existing work [36] have applied the state-of-art embedding technique [30] to learn

user/item embedding for recommendation, these methods are developed for a single do-

main, which fail to generate effective cross-domain item embedding. How to transfer infor-

mation across domains and generate cross-domain app embedding?

—In mobile app store, all domains contribute to the effectiveness of app embedding. How-

ever, the weight (or contribution) of each domain is different, the effectiveness of app em-

bedding and the performance of app recommendation is sensitive to the weight selection.

How to adaptively balance the weight of each domain to generate effective cross-domain app

embedding?

To address these challenges, in this article, we propose a novel embedding model, named, Deep

Multi-Graph Embedding (DMGE). First, to correlate different domains in mobile app store, we con-

struct a cross-domain app graph (i.e., multi-graph) based on users’ behaviors from different do-

mains. In the multi-graph, nodes represent mobile apps, and edges represent app co-occurrences

in users’ historical app download records. Thus, learning cross-domain app embedding is formu-

lated as learning node embedding in the multi-graph. Second, to utilize the power of Graph Neural

Networks (GNNs) [44] on graph embedding, we propose a multi-graph neural network inspired

by multi-task learning, which extends GNNs to learn cross-domain app embedding. Specifically,

we design the domain-shared embedding layers to generate shared embedding of apps, which is

used to transfer across domains, and design the domain-specific embedding layers to generate

specific embedding of apps for each domain based on the shared embedding. Third, to balance

the weight of different domains, we present an adaptive method to dynamically adjust the weight,

and train the model efficiently. Finally, we use the learned cross-domain app embedding to achieve

cross-domain app recommendation.

The contributions of our work are summarized as follows:

—We aim to leverage the complementary information from correlated domains in app store

to facilitate mobile app cross-domain recommendation. Innovatively, we correlate different

domains by modeling the app dependency using a multi-graph, and learn cross-domain app

embedding for cross-domain recommendation.

—We propose DMGE, which is a graph neural network based on multi-task learning, to learn

domain-shared and domain-specific embedding. Particularly, it can adaptively balance the

weight of different domains.

1In this article, the item refers to the mobile app.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:4 Y. Ouyang et al.

(c) Cross-domain app graph.(b) App graph in different domains.

(a) Users’ interaction sequences in different domains.

Fig. 1. Illustration of constructing the app graph: (a) Users’ interaction sequences in different domains, in

which the square denotes user, the circle denotes mobile app, the solid line denotes app co-occurrence in

recommendation domain, and the dashed line denotes app co-occurrence in search domain. (b) App graph in

different domains, in which the node represents app, the edge represents co-occurrence of two apps, and the

weight of edge is the number of co-occurrence of two apps in the interaction sequences. (c) Cross-domain

app graph, i.e., the multi-graph, which contains the app dependency in different domains.

—We evaluate DMGE on large-scale real-world datasets, and the results show that DMGE

outperforms other state-of-the-art embedding methods.

2 PRELIMINARIES

In this section, we present several fundamental definitions of our work.

2.1 Users’ Behaviors in Different Domains

We first introduce two important domains in app store, and users’ behaviors in these domains.

Definition 1 (Recommendation Domain). It refers to the homepage (or category page, etc.)

of app store. It often recommends relevant apps according to user’s historical app download

records.

Definition 2 (Search Domain). It refers to the search page of the app store. Users can search and

download apps in this domain according to their current needs or intention. Both domains share

the same set of mobile apps.

Definition 3 (Interaction Sequence). Suppose there are D (D ≥ 2) domains. In each domain, for

each user, his/her behaviors (i.e., < user ,app, time >) are sequential, and can be sorted by the

timestamps when he/she downloaded the app, as shown in Figure 1(a).

2.2 App Graph Construction

Generally, users’ sequential behaviors in each domain can be modeled by graph intuitively [36].

Specifically, in the app graph, apps can be modeled as nodes, and app co-occurrences can be

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:5

Table 1. A Summary of the Description of Notations

Notation Description

vi A mobile app.

u A user.

D The number of domains.

G The multi-graph.

V,E The node/edge set of G.

Gd The sub-graph, i.e., domain d .

X The app feature matrix.

A The adjacency matrix of multi-graph G.

Ad The adjacency matrix of subgraph Gd .

Xs The shared embedding of apps.

Xd The specific embedding of apps in domain d .

Θs The parameter of shared embedding layers.

Θd The parameter of specific embedding layers in domain d .

modeled as edges. The app graph contains abundant information about users’ behaviors. We then

introduce the construction of app graph.

Definition 4 (App Graph). In domain d (d = {1, . . . ,D}), the app graph Gd = (V,Ed) is con-

structed to represent the dependency (i.e., co-occurrences) between apps, as shown in Figure 1(b).

The node set V denotes the set of apps. The edge set Ed denotes the app co-occurrences. The

weight of edge ei, j is the number of co-occurrence of app i and j in the interaction sequences.

Definition 5 (App Multi-Graph). As these D domains are correlated by the share apps V , the

cross-domain app graph can be constructed as the app multi-graph G = (V,E), which contains

the node set V with N nodes, and the edge set E with D types of edges (i.e., E = {E1, . . . ,ED }.
Each type constructs a subgraph, and each type of edge represents the app co-occurrence in a

domain, as shown in Figure 1(c).

2.3 Problem Definition

To achieve mobile app recommendation, we first learn app embedding in the cross-domain app

graph (i.e., app multi-graph). Then we can generate the user embedding in each domain by

aggregating the embeddings of his/her historical downloaded apps. Finally, we measure user-app

similarity by computing the distance between user embedding and item embedding. Based on the

user-app similarity, we recommend candidate top-K apps for each user in each domain.

Specifically, learning app embedding in the cross-domain app graph can be formulated as learn-

ing node embedding in the multi-graph, which can be stated as follows: with an undirected

weighted multi-graph G = (V,E), and node feature matrix X ∈ RN×M , representing the input

for each node as an M-dimensional vector, our goal is to learn a set of embeddings for all nodes

in each subgraph Gd , i.e., X = {X1, . . . ,XD } (Xd ∈ RN×E is the node embedding in subgraph Gd ,

with each node has an E-dimensional embedding). A summary of the definition of notations is

given in Table 1.

3 DEEP MULTI-GRAPH EMBEDDING

In this section, we elaborate the DMGE model to learn cross-domain app embedding. We first

propose a multi-graph neural network to learn node embedding, and introduce the definition and

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:6 Y. Ouyang et al.

Fig. 2. The architecture of the multi-graph neural network.

architecture of the multi-graph neural network (in Section 3.1). Then, we introduce the key com-

ponents of the multi-graph neural network (from Section 3.2 to Section 3.4). Finally, we present

an adaptive method to learn the weight of each domain (in Section 3.5).

3.1 Multi-Graph Neural Network

In the cross-domain app graph G, the app setV is shared in all subgraphs.2 In Figure 1(c), each app

vi has different neighbors in different subgraph, i.e., each app may co-occur with different apps in

different domains, thus it is likely that app vi has different embeddings in different subgraph [23].

Moreover, all these embeddings belong to the same app vi , thus they are inherently related, and

contain the shared information about app vi . Here, we present two types of app embedding in the

cross-domain app graph G as follows:

Definition 4 (Domain-Shared Embedding). Each appvi has a shared embedding xs , which denotes

the shared information in the multi-graph G. We denote the shared embedding of the multi-graph

G as Xs .

Definition 5 (Domain-Specific Embedding). Each app vi has a specific embedding xd in subgraph

Gd , which encodes the specific information in subgraph Gd . We denote the specific embedding of

subgraph Gd as Xd .

GNNs [39, 44] have recently emerged as a powerful approach for representation learning on

graphs, such as graph convolutional network (GCN) [18]. Existing GNNs are mostly developed for

single graph, where only one type of edge exists between a pair of nodes. However, the multi-graph

may contain multiple types of edges between a pair of nodes, which brings additional complexity,

thus existing GNNs fail to learn effective multi-graph embedding.

To learn multiple types of node embeddings, we propose a multi-graph neural network, which

extends GNNs to generate multi-graph node embedding. The architecture is presented in Figure 2,

which follows the multi-task learning regime [4, 32], and each subgraph (i.e., domain) is viewed

as a task. There are four key components in the architecture: (1) the domain-shared embedding

layers to learn shared embedding of nodes in the multi-graph; (2) the domain-specific embedding

layers to learn specific embedding of nodes in each subgraph; (3) the prediction layer to predict

the probability that a link existing between a pair of nodes based on the specific embedding; and

(4) the adaptive weight balancing module to automatically adjust the weight of different domains.

2A subgraph represents a domain.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:7

The multi-graph neural network has the following characteristics:

—The inputs of the model the node features X (i.e., app features) and adjacency matrix A of

the multi-graph G.

—The outputs of the model are the app embedding Xd in all domains. After obtaining the app

embedding, we can achieve mobile app cross-recommendation based on the app embedding

(as illustrated in Section 4).

—The architecture of the multi-graph neural network is built upon the most commonly

used multi-task structure with hard parameter sharing [4, 32], where the domain-shared

embedding layers are shared across all the domains, and then each domain has the

domain-specific embedding layers on top of the domain-shared embedding. The informa-

tion can be transferred (or shared) across domains from the domain-shared embedding

layers.

—The domain-shared embedding layers are designed to generate shared information by en-

coding the node attributes and multi-graph structure, which can be transferred (or shared)

across domains. The output of these layers is the shared node embedding, which contains

the shared information among all domains, and can be transferred to learn specific embed-

ding in different domains.

—The domain-specific embedding layers are designed to generate specific embedding of

nodes in each domain, based on the domain-shared embedding. Then, the specific embed-

ding in each domain can be used to solve the task in corresponding domain.

—All the domains are correlated by the domain-shared embedding layers.

3.2 Domain-Shared Embedding Layer

The input of the domain-shared embedding layers are the adjacency matrix of multi-graph and

node feature matrix, and these layers are designed to generate shared embedding by encoding

node attributes and multi-graph structure. The graph convolution operator in GCNs [18] can ef-

ficiently learn node embedding based on neighborhood aggregation scheme, thus we adopt the

graph convolution operator in the domain-shared embedding layers:

X
(l+1)
s = ReLu

(
W̃
− 1

2 ÃW̃
− 1

2 X
(l)
s Θ(l)

s

)
, (1)

where X
(l+1)
s ∈ RN×Es is the shared embedding of multi-graph G in l-th layer, and X

(0)
s = X ∈

RN×M is the node feature matrix. Ã = A + IN ∈ RN×N is the adjacency matrix of graph G with

added self-connections. A ∈ RN×N is the adjacency matrix, and A(i, j) = 1 if there are any links

between node vi and vj in each domain. The adjacency matrix A can be seen as the union of link

information in all domains, i.e., the adjacency matrix A encodes different types of edges between

mobile apps across all domains. IN ∈ RN×N is the identity matrix. W̃ ∈ RN×N is a diagonal matrix,

and W̃(i, i) =
∑

j Ã(i, j). Θ(l)
s ∈ RN×Es is the shared weight matrix of l-th layer. The output of

the l-th shared embedding layer is the shared node embedding Xs , which contains the shared

information among all subgraphs, and can be transferred to learn specific embedding in different

subgraphs.

3.3 Domain-Specific Embedding Layer

Based on the shared embedding Xs , the domain-specific embedding layers are designed to generate

specific embedding of nodes on each subgraph by Equation (2), and the inputs of these layers are

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:8 Y. Ouyang et al.

the shared embedding and the adjacency matrix of each subgraph.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

X
(l+2)
1 = ReLu

(
W̃
− 1

2

1 Ã1W̃
− 1

2

1 X
(l+1)
1 Θ(l+1)

1

)

. . .

X
(l+2)
D
= ReLu

(
W̃
− 1

2

D
ÃD W̃

− 1
2

D
X

(l+1)
D

Θ(l+1)
D

)
,

(2)

where X
(l+2)
d
∈ RN×E is the specific embedding of subgraph Gd in l+1-th layer, and X

(l+1)
d
= Xs

is the shared embedding. Ãd = Ad + IN ∈ RN×N . Ad ∈ RN×N and Ad (i, j) is the weight of edge

(vi ,vj), and the weight of the edge is the number of co-occurrence of app i and j. W̃d ∈ RN×N and

W̃d (i, i) =
∑

j Ãd (i, j). Θ(l+1)
d
∈ REs×E is the specific weight matrix of l + 1-th layer. The outputs

of the specific embedding layers is the set of node embedding X = {X1, . . . ,XD }.

3.4 Prediction Layer

In this layer, we use the domain-specific embeddings to predict the linkage between two nodes in

a subgraph (i.e. the probability that a link existing between two nodes), and train the model by

modeling the graph structure. The probability that there exists an edge between nodevi and node

vj in subgraph Gd is defined in Equation (3):

ŷi j = σ
(
x

T
d,i · xd, j

)
, (3)

where xd,i is the i-th row of Xd , which is the embedding of node vi in subgraph Gd . σ (·) is the

sigmoid function.

For each subgraph Gd , the loss function Ld is defined as the cross-entropy of the prediction ŷ
and the ground truth y, which can be formulated as follows:

Ld = − yi j log(ŷi j) − (1 − yi j) log(1 − ŷi j)

= −
∑

vj ∈Sd,p

logσ
(
x

T
d,i · xd, j

)
−
∑

vk ∈Sd,n

logσ
(
−x

T
d,i · xd,k

)
, (4)

where Sd,p is the set of positive samples in subgraph Gd , which contains the tuples (vi ,vj ,d) with

an edge between node vi and vj in subgraph Gd . Sd,n = {vk |k = 1, . . . , S } is the set of negative

samples in subgraphGd , andSd,n is sampled from node setV by negative sampling [25, 26], which

contains the tuples (vi ,vk ,d) with no edge between node vi and vk in subgraph Gd . Specifically,

the negative samples inSd,n are generated based on the degree of the node, i.e., sampling the nodes

with large degree values. Because these nodes usually contain sufficient structural and semantic

information in the graph.

Therefore, the objective function of the model is defined as Equation (5):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

L1 = −
∑

vj ∈S1,p

logσ
(
x

T
1,i · x1, j

)
−
∑

vk ∈S1,n

logσ
(
−x

T
1,i · x1,k

)

. . .

LD = −
∑

vj ∈SD,p

logσ
(
x

T
D,i · xD, j

)
−
∑

vk ∈SD,n

logσ
(
−x

T
D,i · xD,k

)
.

(5)

3.5 Adaptive Weight Balancing

In fact, the multi-graph neural network is difficult to train, because multiple subgraphs (i.e., do-

mains) need to be solved jointly, different domains need to be properly balanced to train the shared

and specific embedding that are useful to all domains. Generally, a naive approach to train the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:9

model is to perform a weighted sum of the loss function in Equation (5): L =
∑D

d=1 αdLd , which is

the dominant approach in multi-task learning [4]. However, there are some issues of this method.

First, the weight αd controls the information transfer across domains, the effectiveness of em-

bedding and the model performance is dependent on the weight selection. Second, it is time-

consuming and computationally expensive to tune the weight αd manually, makes the model

learning prohibitive in practice. Therefore, it is desirable to find an adaptive method to balance

the weight automatically and train the model efficiently.

We derive the weight of each domain from the perspective of multi-objective optimization. To

benefit all domains, we need to optimize all the objectives as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

min
Θs ,Θ1

L1 (Θs ,Θ1)

. . .
min

Θs ,ΘD

LD (Θs ,ΘD),
(6)

where Θs is the domain-shared parameter, Θd (d = {1, . . . ,D}) is the domain-specific parameter.

To solve Equation (6), we first state the Karush–Kuhn–Tucker (KKT) conditions [20], which is

a necessary condition for the optimal solution of multi-objective optimization.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

D∑
d=1

αd
∂Ld (Θs ,Θd)

∂Θs
= 0

∂Ld (Θs ,Θd)
∂Θd

= 0
D∑

d=1
αd = 1

αd ≥ 0

(7)

where αd is the weight of objective Ld (Θs ,Θd).
As proved in [8], the solution to Equation (8) falls into two cases, one is 0 and the result sat-

isfies the KKT conditions Equation (7); the other is that the solution gives a descent direction

that improves all objectives in Equation (6). Thus, solving Equation (7) is equivalent to optimizing

Equation (8).

min
α1, ...,αD

������

D∑
d=1

αd
∂Ld (Θs ,Θd)

∂Θs

������

2

2

s .t .
⎧⎪⎪⎨
⎪⎪
⎩

D∑
d=1

αd = 1

αd ≥ 0

(8)

To clearly illustrate how to derive αd , we consider the case of two domains, thus Equation (8)

can be simplified as:

min
α

�����
α
∂L1 (Θs ,Θ1)

∂Θs
+ (1 − α)

∂L2 (Θs ,Θ2)

∂Θs

�����

2

2

s .t . 0 ≤ α ≤ 1

(9)

where α is the weight of loss function L1 (Θs ,Θ1).
Equation (9) is a unary quadratic equation of α , and the solution to Equation (9) is:

α =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

0, sum(UT
V) ≥ sum(VT

V)
1, sum(UT

V) ≥ sum(UT
U)

(V−U)T
V

‖U−V‖22
, else

(10)

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:10 Y. Ouyang et al.

ALGORITHM 1: Deep Multi-Graph Embedding

Input: A multi-graph G = (V, {E1, . . . ,ED }), and the node feature matrix X ∈ RN×M

Parameter: Θs , Θd (d = {1, . . . ,D}), and αd

Output: Node embedding X = {X1, . . . ,XD }(Xd ∈ RN×E)

1: Initialize parameters Θs , Θd , and αd .

2: Operate convolution on multi-graph G by Equation (1) and Equation (2).

3: for d ∈ [1,D] do

4: for (vi ,vj) ∈ Ed do

5: Sample a set of negative samples Sd,n .

6: Optimize the loss function Equation (5), and automatically tune αd by using Equation (10).

7: end for

8: end for

9: return A set of node embedding X = {X1, . . . ,XD }

where U =
∂L1 (Θs ,Θ1)

∂Θs
, V =

∂L2 (Θs ,Θ2)
∂Θs

, sum(UT
V) =

∑
i

∑
j (UT

V)i j . The weight α updates at each

training step, and it is dynamically changing in the training process.

Finally, the loss function can be defined as follows:

L =
D∑

d=1

αdLd . (11)

The weight αd and the loss function are trained simultaneously. After training the model, we

can obtain the app embedding in each domain, which will be further used for cross-domain app

recommendation (as illustrated in Section 4).

Finally, we summarize the learning procedure of DMGE in Algorithm 1. In DMGE, the input

includes the multi-graphG and the node feature matrix X. In line 1, we first initialize the parameter

sets Θs , Θd and the weight αd of each domain. Then, we operate convolution on the multi-graph

G in line 2. For each subgraph Gd , we sample a set of negative samples in line 5. We use the link

information to train DMGE, optimize the loss function Equation (5), and automatically tune αd by

using Equation (10) simultaneously in line 6. Finally, we return a set of node embedding in line 9.

The time complexity of the model is O (NEs + D (NEs + NEsE)), and the memory complexity is

O (2NEs + D (NE + EsE)). The complexity is linear in the number of nodes (i.e., apps) N and the

number of domains D.

4 CROSS-DOMAIN APP RECOMMENDATION

In this section, we will introduce how to achieve mobile apps cross-recommendation based on the

app embedding.

Generally, users’ preferences can be characterized by their historical downloaded apps, thus

we represent users by aggregating embeddings of their downloaded apps [43]. We apply mean

aggregator here, and represent users by using the average app embeddings:

ud =
1

Id

Id∑
i=1

xd,i , (12)

where ud is the embedding of user u ∈ U in domain d , Id is the number of apps user u has down-

loaded, and xd,i is the embedding of app i in domain d .

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:11

Table 2. Statistics of Datasets

Dataset Domain/relation Nodes Edges

Tencent App Store
Recommendation 18,229 548,930

search 18,229 936,065

Youtube
Friendship 15,088 76,765

co-friends 15,088 1,940,806

Then, for each domain, we measure user-app similarity by computing the cosine distance be-

tween user embedding and item embedding. Finally, based on the user-app similarity, we recom-

mend candidate top-K app for each user in each domain.

5 EXPERIMENTS

In this section, we first present the research questions about DMGE. Then, we introduce the

datasets and experimental settings. Next, we present the experimental results to demonstrate the

effectiveness of DMGE. Finally, we make a discussion of the deep insights of our work.

We first present the following four research questions:

—RQ1: How does DMGE perform in the mobile app cross-domain recommendation task com-

pared with other state-of-the-art embedding methods for recommendation?

—RQ2: How does the parameter sensitivity affect the performance of DMGE for app recom-

mendation?

—RQ3: Does the app embedding generated by DMGE can reflect the similarity between apps?

—RQ4: How does DMGE perform in the link prediction task on graph compared with other

state-of-the-art graph embedding methods?

5.1 Datasets

We evaluate our model on two real-world datasets, the details of datasets are as follows and the

statistics of datasets are presented in Table 2.

—Tencent App Store: It is the mobile app download records from a company app store,

which contains recommendation domain and search domain. The time span of the dataset

is 31 days, the number of apps is 18,229, and the number of user is 1,011,567. Based on the

download records, we construct the app graph for each domain, and the statistics of graph

is presented in Table 2. We use this dataset for mobile app cross-domain recommendation

task.

—Youtube3: The dataset is used to investigate the RQ4. The dataset [42] is a multi-

dimensional network consists of various type of interactions between users. We utilize two

types of relation among users, i.e., friendship and co-friends. The friendship relation means

two users are friends, and the co-friends means two users have shared friends. We use this

dataset for link prediction task in the multi-graph.

The two datasets are used differently in the experiments. As RQ1 described, the app store dataset

is used to evaluated the app recommendation performance of different methods. As RQ4 described,

the YouTube dataset is used to evaluate the link prediction performance of different graph embed-

ding methods. The goal of our work is mobile app cross-domain recommendation, thus we focus on

evaluating the app recommendation performance of different methods. The link prediction task is

3http://socialcomputing.asu.edu/datasets/YouTube.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

http://socialcomputing.asu.edu/datasets/YouTube

55:12 Y. Ouyang et al.

just an auxiliary experiment to evaluate the performance of the method in the classic task on graph

(e.g., link prediction). Thus, we perform app recommendation on app store dataset, and perform

link prediction on YouTube dataset.

5.2 Experimental Settings

5.2.1 Baseline Methods. For both tasks, we choose the following state-of-the-art graph embed-

ding methods as baselines:

—DeepWalk [30]: It applies random walk on graph to generate node sequences, and uses

Skip-Gram algorithm to learn embedding. We apply DeepWalk to each subgraph separately.

—LINE [34]: It learns node embedding through preserving both local and global graph struc-

tures. We apply LINE to each subgraph separately.

—node2vec [10]: It designs a biased random walk to explore diverse neighbors. We apply

node2vec to each subgraph separately.

—GCN [18]: It operates convolution on graph, and generates node embedding based on neigh-

bors. We apply GCN to each subgraph separately.

—mGCN [23]: It applies GCNs for multi-graph embedding. It can generate both general em-

beddings to capture the information for nodes over the entire graph and dimension-specific

embeddings to capture the information for nodes in each subgraph.

—DMGE(α): It is a variant of DMGE. It tunes the weight in Equation (6) manually, and α is

the weight of the first domain.

For the mobile app cross-domain recommendation task, besides the above baselines, we also

compare with MF [19], which factorizes user-item matrix into user embedding and item embed-

ding, respectively. We apply MF to each domain separately.

5.2.2 Evaluation Metrics. To evaluate the performance of app recommendation, we compare

the recommended top-K list Ru with the ground truth listTu for each useru, and use the following

metrics to evaluate the top-K recommended results:

—Recall@K : It calculates the fraction of the ground truth (i.e., the user downloaded apps)

that are recommended by different algorithms using Equation (13), where U is the user

set, hu denotes the number of downloaded apps hits in the candidate top-K app list Ru for

user u, and tu denotes the number of downloaded app list Tu of user u. A larger value of

recall@K means better performance.

Recall@K =

∑
u ∈U hu∑
u ∈U tu

. (13)

—MRR@K : Mean Reciprocal Rank (MRR) uses the multiplicative inverse of the rank of the

first hit app among top-K app list to evaluate the performance of rank by Equation (14),

where ru is the rank of the first hit app. A larger value of MRR@K means better performance.

MRR@K =
1

|U |
∑

u ∈U

1

ru
. (14)

To evaluate the performance of link prediction, we use the metrics of classification: AUC

and F1.

5.2.3 Model Parameters. The parameters of DMGE are set as follows:

—Network architecture. The number of shared and specific embedding layers are both 1, the

shared hidden size is 64, and the specific hidden size is 16.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:13

Table 3. Recall@K Performance of Different Methods in Recommendation Domain

Domain Recall@K 10 20 30 40 50 60 70 80 90 100 1000

MF 0.0301 0.0453 0.0565 0.0658 0.0739 0.0812 0.0880 0.0942 0.1002 0.1065 0.2932

DeepWalk 0.0730 0.1104 0.1363 0.1558 0.1720 0.1853 0.1975 0.2082 0.2186 0.2273 0.4744

Single LINE 0.0622 0.0908 0.1128 0.1311 0.1487 0.1627 0.1756 0.1880 0.1987 0.2085 0.5032

node2vec 0.0345 0.0579 0.0773 0.0936 0.1080 0.1207 0.1324 0.1436 0.1534 0.1630 0.4574

GCN 0.0773 0.1139 0.1402 0.1642 0.1843 0.1981 0.2134 0.2267 0.2389 0.2487 0.5693

mGCN 0.0431 0.0835 0.1273 0.1677 0.2002 0.2142 0.2261 0.2383 0.2505 0.2627 0.6323

Cross DMGE(0.5) 0.1019 0.1607 0.2069 0.2436 0.2762 0.3035 0.3260 0.3471 0.3660 0.3826 0.7016

DMGE 0.1024 0.1661 0.2109 0.2455 0.2767 0.3042 0.3277 0.3484 0.3669 0.3831 0.6929

— Initialization. The node feature matrix can be initialized randomly, or by other embedding

methods, we initialize it as the identity matrix.

—Gradient normalization. We normalize the gradient of shared parameter Θs of each domain,

and then use the normalized gradient to calculating α in Equation (10). The normalized gra-

dient of domaind is Gd/ (‖Gd ‖2 · Ld), where Gd =
∂Ld (Θs ,Θd)

∂Θs
is the unnormalized gradient.

—Other hyper-parameters. The number of negative samples is 2; the embedding dimension

is 16; the dropout of shared embedding layers is 0.3 and that is 0.1 of specific embedding

layers; the batch size is 256 and we train the model using Adam [17].

The parameters of baselines are fine tuned, and set as follows:

(1) MF, it is implemented using LibMF.4 (2) DeepWalk, the length of context window is 5; the

length of random walk is 20; the number of walks per node is 50. (3) LINE, the number of negative

samples is 2. (4) node2vec, p is 1 and q is 0.25; other parameter settings are the same as DeepWalk.

(5) GCN, the number of negative samples is 2. (6) mGCN, the initial general embedding size is 64,

other parameter settings are the same as [23]. (7) DMGE(α), considering that both domains are

important, we set the weight α to 0.5; the other parameter settings are the same as DMGE.

5.3 Mobile App Cross-Domain Recommendation

To demonstrate the performance of DMGE in app recommendation task (RQ1), we compare DMGE

with other state-of-the-art embedding methods. The intuition is that better embeddings will

achieve better performance of recommendation.

For the app store dataset, we follow the commonly-used data splitting method in recommenda-

tion task [37, 43], i.e., splitting the data by time. We use data in consecutive 26 days to train app

embedding, and measure the performance of app recommendation in the next 5 days by the metric

Recall@K and MRR@K . The performance of different methods for recommendation domain and

search domain is presented in Tables 3–6. (Note that the best results are indicated by the bold font.)

Based on the results, we have the following observations:

—We first compare the performance of single-domain methods, including: MF, DeepWalk,

LINE, node2vec, and GCN. We can observe the graph embedding methods outperforms

MF, as MF only takes into account the explicit user-app interactions, while ignoring app

dependency in users’ behaviors, which can reflect users’ preferences.

—The overall performance of cross-domain methods (i.e., mGCN, DMGE(α), DMGE) is bet-

ter than the single domain methods, which demonstrates that fusing information from

4https://www.csie.ntu.edu.tw/∼cjlin/libmf/.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

https://www.csie.ntu.edu.tw/~cjlin/libmf/

55:14 Y. Ouyang et al.

Table 4. Recall@K Performance of Different Methods in Search Domain

Domain Recall@K 10 20 30 40 50 60 70 80 90 100 1000

MF 0.0150 0.0251 0.0335 0.0408 0.0474 0.0533 0.0589 0.0642 0.0691 0.0739 0.2679

DeepWalk 0.0638 0.1043 0.1338 0.1571 0.1761 0.1924 0.2064 0.2185 0.2291 0.2387 0.4676

Single LINE 0.0546 0.0834 0.1044 0.1210 0.1348 0.1472 0.1584 0.1685 0.1774 0.1861 0.4439

node2vec 0.0289 0.0471 0.0622 0.0753 0.0870 0.0982 0.1082 0.1174 0.1260 0.1346 0.4176

GCN 0.0724 0.1089 0.1342 0.1534 0.1684 0.1812 0.1923 0.2023 0.2115 0.2201 0.5132

mGCN 0.0478 0.0939 0.1454 0.1938 0.2218 0.2328 0.2399 0.2480 0.2565 0.2653 0.5920

Cross DMGE(0.5) 0.0823 0.1363 0.1784 0.2134 0.2415 0.2652 0.2857 0.3037 0.3206 0.3360 0.6254

DMGE 0.0885 0.1467 0.1900 0.2238 0.2517 0.2759 0.2971 0.3162 0.3328 0.3473 0.6263

Table 5. MRR@K Performance of Different Methods in Recommendation Domain

Domain MRR@K 10 20 30 40 50 60 70 80 90 100 1000

MF 0.0149 0.0170 0.0180 0.0185 0.0188 0.0191 0.0193 0.0194 0.0196 0.0197 0.0208

DeepWalk 0.0510 0.0549 0.0563 0.0571 0.0575 0.0578 0.0581 0.0582 0.0584 0.0585 0.0594

Single LINE 0.0532 0.0561 0.0573 0.0580 0.0585 0.0588 0.0590 0.0592 0.0594 0.0595 0.0607

node2vec 0.0265 0.0290 0.0302 0.0308 0.0312 0.0315 0.0317 0.0319 0.0321 0.0322 0.0334

GCN 0.0641 0.0681 0.0695 0.0703 0.0708 0.0711 0.0713 0.0715 0.0717 0.0718 0.0729

mGCN 0.0264 0.0311 0.0338 0.0354 0.0364 0.0367 0.0370 0.0372 0.0373 0.0375 0.0389

Cross DMGE(0.5) 0.0697 0.0756 0.0780 0.0793 0.0801 0.0807 0.0811 0.0814 0.0816 0.0817 0.0829

DMGE 0.0699 0.0761 0.0785 0.0797 0.0805 0.0810 0.0814 0.0817 0.0819 0.0821 0.0832

Table 6. MRR@K Performance of Different Methods in Search Domain

Domain MRR@K 10 20 30 40 50 60 70 80 90 100 1000

MF 0.0120 0.0134 0.0141 0.0145 0.0148 0.0150 0.0151 0.0152 0.0153 0.0154 0.0164

DeepWalk 0.0468 0.0515 0.0534 0.0543 0.0549 0.0553 0.0556 0.0558 0.0560 0.0561 0.0571

Single LINE 0.0466 0.0500 0.0514 0.0522 0.0526 0.0530 0.0532 0.0534 0.0536 0.0537 0.0548

node2vec 0.0237 0.0260 0.0271 0.0278 0.0283 0.0286 0.0289 0.0290 0.0292 0.0293 0.0307

GCN 0.0558 0.0600 0.0616 0.0625 0.0630 0.0633 0.0635 0.0637 0.0639 0.0640 0.0651

mGCN 0.0324 0.0382 0.0415 0.0435 0.0443 0.0446 0.0448 0.0449 0.0450 0.0452 0.0465

Cross DMGE(0.5) 0.0592 0.0653 0.0678 0.0691 0.0700 0.0705 0.0709 0.0712 0.0714 0.0716 0.0728

DMGE 0.0629 0.0693 0.0718 0.0731 0.0739 0.0744 0.0748 0.0751 0.0753 0.0755 0.0766

correlated domains is helpful to learn better app embedding, and can improve the perfor-

mance of recommendation in both domains. When K is less than 40 in recommendation

domain and K is less than 30 in search domain, the Recall of mGCN is worse than the single

domain methods, the possible reason is that the weight between within-domain and across-

domain in mGCN is a hyper-parameter to be tuned, and cannot be adaptively learned by

the importance of each domain. Both DMGE and DMGE(α) outperform the single domain

methods.

—Comparing the cross-domain methods, both DMGE(α) and DMGE outperform mGCN,

which indicates that our model is effective to learn better app embeddings.

—DMGE outperforms DMGE(α). We find that the average of α in DMGE is 0.4409, thus

when α = 0.5, DMGE(α) can also achieve good performance. However, in DMGE(α), it is

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:15

(a) DMGE (b) DeepWalk (c) LINE

(d) node2vec (e) GCN () mGCN

Fig. 3. The parameter sensitivity analysis of embedding dimension.

time-consuming and computationally expensive to tune the hyper-parameter α manually to

obtain the optimal result. While in DMGE, α is a trainable parameter. Thus, we recommend

to use the adaptive method to train the model.

Overall, the proposed DMGE outperforms the state-of-the-art embedding methods, and im-

proves the performance of app recommendation in both domains.

5.4 Parameter Sensitivity

The key parameter that affects the performance of app recommendation is the dimension size

of app embedding (RQ2), we analyze how does the dimension size of app embedding affect

the performance of different graph embedding methods. In particular, we test the dimension

size = {8, 16, 32, 64}. Figure 3 show the results of different embedding dimension in recommen-

dation and search domain, and the evaluation metric is Recall@100.

As shown in Figure 3(a), in both domains, when the dimension of app embedding is 16, DMGE

performs the best. Therefore, we set the dimension of app embedding as 16.

Figure 3(b)–(f) shows the results of the graph embedding methods; we present the optimal di-

mension of different methods as follows: the dimension in DeepWalk is set to 16; the dimension

in LINE is set to 64; the dimension in node2vec is set to 16; the dimension in GCN is set to 32; and

the dimension in mGCN is set to 16.

5.5 Case Study: App-App Similarity

To evaluate whether the app embedding generated by DMGE can reflect the similarity between

apps (RQ3), we conduct a case study, and measure the app–app similarity by computing cosine

distance between the embeddings of two apps. Table 7 presents the seed app and their top three

similar apps in recommendation domain. (Note that inside the bracket is the category of the app.)

We can observe that the seed app Youku Video (Taobao, Cross Fire, or B612) has the same cat-

egory and functionality as its top-3 similar apps. Considering the seed app WeChat, though the

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:16 Y. Ouyang et al.

Table 7. App-App Similarity in Recommendation Domain

App Top-3 similar apps

WeChat (Social) QQ (Social), Tencent Video (Video), Kuaishou (Social)

Youku Video (Video) Baidu Video (Video), iQiYi Video (Video), Sohu Video (Video)

Taobao (Shopping) JD.com (Shopping), Pinduoduo (Shopping), TMall (Shopping))

TouTiao (Reading) Tencent News (Reading), Xigua Video (Video), Kuaibao (Reading)

Cross Fire (Game) Happy Poker (Game), Wangzhe Rongyao (Game), Clash Royale (Game)

B612 (Photography) Facue (Photography), BeautyCam (Photography), Meitu XiuXiu (Photography)

category of Tencent Video is different from it, both of them are developed by the same developer,

besides, users can also share the interesting videos in Tencent Video to their WeChat friends. So,

though the category of Tencent Video is Video, it still has social properties to some extent. Consid-

ering the seed app Toutiao, though the category of Xigua Video is different from it, both of them

are developed by the same developer, besides, both of these two apps share some of the same video

content. Although the category of these apps are different, they are still relevant.

We find that the app embedding generated by DMGE can capture the similarity between apps.

5.6 Link Prediction

To demonstrate the performance of DMGE in link prediction task (RQ4), we compare DMGE with

other state-of-the-art graph embedding methods. The intuition is that better embeddings will

achieve better performance of link prediction.

In the multi-graph, we perform link prediction in different subgraph separately. In each sub-

graph, we randomly remove 30% of edges, and we aim to predict whether these removed edges

exist. We formulate the link prediction task as a binary classification problem by using the embed-

dings of two nodes, and there are two types of combination: element-wise addition, element-wise

multiplication.

In training set, we use the remaining node pairs as positive samples, and randomly sample an

equal number of not connected node pairs as negative samples. In testing set, we use the removed

node pairs as positive samples, and randomly sample an equal number of not connected node

pairs as negative samples. We train a binary classifier using logistic regression on the training set,

and evaluate the performance of link prediction on the testing set. For each method, we choose

the optimal combination of embeddings and present the best results. The average performance

of different methods are presented in Figure 4. For metric AUC, the standard deviations of all

methods are as follows: DeepWalk is 0.0440, LINE is 0.0388, node2vec is 0.0367, GCN is 0.0038,

mGCN is 0.0053, DMGE(α) is 0.0088, and DMGE is 0.0031. For metric F1, the standard deviations

of all methods are as follows: DeepWalk is 0.0502, LINE is 0.0662, node2vec is 0.0434, GCN is 0.0115,

mGCN is 0.0011, DMGE(α) is 0.0066, and DMGE is 0.0064.

Based on the results, we have the following observations:

—The multi-graph embedding methods (i.e., mGCN, DMGE(α), and DMGE) outperform the

single graph embedding methods (i.e., DeepWalk, LINE, node2vec, and GCN), which indi-

cates that using multiple relations in the multi-graph is helpful to learn better embedding.

—DMGE(α) and DMGE outperform mGCN, which indicates that our proposed graph neural

network is effective to learn better embeddings.

—The average performance of DMGE is better than DMGE(α), which indicates the effective-

ness of training the model in the adaptive way.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:17

Fig. 4. The performance of different methods in link prediction.

5.7 Discussion

We next discuss the potential future directions to improve this work.

5.7.1 Node Features. To take full advantage of the information of user–app interaction data,

aside from using them for graph construction, we can also use them as node features. Using the

user–app interaction data as additional features, we can represent the node features by encoding

both its own information (i.e., the one-hot features) and the user–app interaction information. In

particular, the user–app interaction information can reveal users’ preferences for apps. Thus, it is

helpful to learn effective node embeddings by using the user–app interaction data as the additional

features.

5.7.2 The Usage of Embedding. The embeddings of DMGE can be used for candidate apps gen-

eration in the recall stage. Through calculating the pairwise similarities between the embeddings

of users and apps, we can generate a candidate set of apps which users may like, and the can-

didate set can be further used in the ranking stage to generate the final recommendation set of

apps [5]. Besides, the embeddings can also be used for transfer learning [27] and alleviating the

sparsity [43].

5.7.3 Cross-Domain Representation Learning. In app store, there are many domains, in addition

to the recommendation and search domain studied in this article, there are game domain (i.e., the

game page in app store), ranking domain (i.e., the app ranking page in app store), and so on. When

there are multiple domains, using the Frank–Wolfe algorithm [15, 33], we can efficiently obtain

the weight αd of each domain in Equation (8). With the learned weight αd , we can optimize the

loss function in Equation (11) to train the model.

5.7.4 Scalability. The training time of the model is 30 minutes per epoch on average, and testing

time is 35 minutes per epoch on average. The embedding layers in DMGE adopt the graph convo-

lution operator in GCN [18]. However, GCN requires the full graph Laplacian, thus it is computa-

tionally expensive to apply GCN for large-scale graph embedding. To apply DMGE for large-scale

multi-graph embedding, we have the following strategy: we can adopt GraphSAGE [12] as the

embedding layers in DMGE, as GraphSAGE generates embeddings by sampling and aggregating

features from a node’s local neighborhood, and only requires local graph structures.

6 RELATED WORK

In this section, we review the relevant works in four areas that best line up with our research.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:18 Y. Ouyang et al.

6.1 Cross-Domain Recommendation

Cross-domain RSs [3] aim to fuse information from correlated domains to improve the perfor-

mance of recommendation. Based on the information shared by different domains, existing works

on cross-domain recommendation mainly fall into two categories, i.e., user-shared and item-shared.

In user-shared cross-domain recommendation [14], user embeddings or profiles are usually shared

across domains. However, user information in different domains may not be directly accessible

due to privacy protection or the absence of user profiles, thus it is difficult to directly obtain the

shared user information. In item-shared cross-domain recommendation [24, 45], MF techniques [19,

31] are often used to factorize user-item interaction matrix into user and item embeddings, then

item embeddings are shared or transferred across domains. However, these works only consider

the user-item interaction, while ignore the item dependency (i.e., the item co-occurrences in users’

behaviors). The item dependency has been proved to be also important to capture item-item sim-

ilarity and reflect users’ preferences [36, 43], we are thus motivated to achieve cross-domain rec-

ommendation based on the app dependency in users’ behaviors.

6.2 Mobile Apps Recommendation

Mobile app recommendation has attracted an increasing number of attention of researchers, which

aims to recommend each user with a personalized set of apps. Existing works on mobile app rec-

ommendation can be mainly divided into three categories. Context-aware app recommendation [16,

47], which aims to recommend relevant apps to user based on his/her current mobile context infor-

mation (e.g., time and location). A tensor is often used to represent user-app-context interaction in

users’ mobile app usage history. Then tensor decomposition methods [16] are commonly used to

represent user’ preferences, app information, and context information to facilitate context-aware

app recommendation. Privacy protection-based app recommendation [22, 46], which aims to pro-

tect user privacy in mobile app recommendation, as mining and understanding user preferences

may also leak users’ privacy information. Specifically, the trade-off between users’ privacy prefer-

ences and apps’ attributes (e.g., popularity and functionality) is considered to achieve mobile app

recommendation. Cold-start app recommendation [21], which aims to recommend newly released

apps with no ratings to users. Relevant information from Twitter about the apps is used to solve

the cold-start app recommendation problem. Different from the above studies, we focus on users’

download behaviors in mobile app store, and aim to leverage the complementary information from

correlated domains in mobile app store to facilitate cross-domain app recommendation.

6.3 Embedding Methods for Recommendation

Representation learning [1] is one of the most fundamental problems in deep learning. As a prac-

tical application, effective embedding has been proven to be useful and achieve significant per-

formance in RSs including: E-commerce [36, 43], search ranking [9], and social media [40]. The

embedding methods in RSs can be divided into two categories: word embedding-based methods

and graph embedding-based methods. The former methods [9, 43] learn embedding by modeling

the item co-occurrence in users’ behavior sequences. Specifically, they model the items as words

and user’s behavior sequences as sentences, and apply the word embedding methods [25, 26] to

represent items in a low-dimensional space. While the latter methods [36, 40] construct item graph

based on users’ behaviors, they model the items as nodes and item co-occurrences as edges, and

apply the graph embedding methods [6, 12, 13, 30] to learn embedding. However, these methods

are developed to learn embedding in a single domain, which fail to learn effective cross-domain

embedding.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:19

6.4 Graph Neural Network

GNNs [38, 39] have emerged as a powerful approach for representation learning on graphs re-

cently, such as GCN [18], GraphSAGE [12], and GAT [35]. Through a recursive neighborhood

aggregation scheme, GNNs can generate node embedding by aggregating features of neighbors.

In this part, we focus on reviewing related works about the convolution based GNNs, which can

be categorized as spectral approaches and non-spectral approaches.

The spectral approaches depend on the theory of spectral graph convolutions. Bruna et al. [2]

first propose a generalization of convolutional neural networks to graphs, however, it is computa-

tionally expensive. Defferrard et al. [7] designK-localized convolutional filters on graphs based on

spectral graph theory, which is more computationally efficient. Kipf et al. [18] limit the layer-wise

convolution operation to K = 1 to avoid overfitting, and propose the GCN to encode both local

graph structure and features of nodes by layer-wise propagation. The non-spectral approaches

operate spatial convolutions on the graph. Hamilton et al. [12] propose GraphSAGE to generate

node embeddings by sampling and aggregating features from a node’s local neighborhood. How-

ever, these GNNs are developed for single graph embedding, which fail to learn effective multi-

graph embedding, because these GNNs can only generate the node embeddings, which encode

the information from all domains, i.e., domain-shared embeddings. However, directly applying the

same embeddings learned by GNNs to all domains may not be applicable, because each domain has

specific information, and the same embedding cannot capture the specific characteristic of each

domain. The main difference between DMGE and GNNs is that, DMGE learns both the domain-

shared embedding and the domain-specific embedding, while GNNs can only generate the shared

node embedding.

There are also GNNs for learning multi-graph embedding, such as: Graph Transformer Network

(GTN) [41], which is designed to learn node representation in the heterogeneous graph. The main

difference between GTN and DMGE is that, the functionalities of these two methods are different.

GTN can only generate one type of embedding for each node, and cannot generate multiple types

of embeddings for each node to adaptive to multiple domains. We cannot directly apply the same

embedding of a node learned by GTN to all domains, because each domain has specific information,

and the same embedding cannot capture the specific characteristic of each domain. While DMGE

first utilizes the domain-shared embedding layers to learn shared embedding of nodes in the multi-

graph. Then, it further feeds the domain-shared node embeddings into different domain-specific

embedding layers to learn specific embedding of nodes in different domain. The learned domain-

specific embedding can be used to solve the app recommendation task in the domain.

7 CONCLUSION

In this article, we aim to leverage the complementary information from correlated domains in

app store to facilitate mobile app cross-domain recommendation. We propose the DMGE model,

which is a graph neural network based on multi-task learning. We construct the cross-domain app

graph as a multi-graph based on users’ behaviors from different domains in app store, and then

design a multi-graph neural network to learn multi-graph embedding. Particularly, we present an

adaptive method to balance the weight of different domains and efficiently training the model.

Finally, we achieve cross-domain app recommendation based on the learned app embedding. We

evaluate our approach on large-scale real-world datasets, and the experimental results show that

DMGE outperforms other state-of-the-art embedding methods.

REFERENCES

[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation learning: A review and new perspectives.

IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 8 (2013), 1798–1828.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

55:20 Y. Ouyang et al.

[2] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral networks and locally connected net-

works on graphs. In Proceedings of the 2nd International Conference on Learning Representations. 1–14.

[3] Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, and Paolo Cremonesi. 2015. Cross-domain recom-

mender systems. In Recommender Systems Handbook. Springer, 919–959.

[4] Rich Caruana. 1997. Multitask learning. Machine Learning 28, 1 (1997), 41–75.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for Youtube recommendations. In Proceed-

ings of the 10th ACM Conference on Recommender Systems. ACM, 191–198.

[6] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network embedding. IEEE Transactions on Knowl-

edge and Data Engineering 31, 5 (2018), 833–852.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with

fast localized spectral filtering. In Proceedings of the Advances in Neural Information Processing Systems. 3844–3852.

[8] Jean-Antoine Désidéri. 2012. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. Comptes

Rendus Mathematique 350, 5–6 (2012), 313–318.

[9] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time personalization using embeddings for search ranking at Airbnb.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 311–320.

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 855–864.

[11] Bin Guo, Yi Ouyang, Tong Guo, Longbing Cao, and Zhiwen Yu. 2019. Enhancing mobile app user understanding and

marketing with heterogeneous crowdsourced data: A review. IEEE Access 7 (2019), 68557–68571.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Proceedings

of the Advances in Neural Information Processing Systems. 1024–1034.

[13] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs: Methods and applica-

tions. IEEE Data Engineering Bulletin 40, 3 (2017), 52–74.

[14] Guangneng Hu, Yu Zhang, and Qiang Yang. 2018. Conet: Collaborative cross networks for cross-domain recommen-

dation. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 667–676.

[15] Martin Jaggi. 2013. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th

International Conference on Machine Learning. 427–435.

[16] Alexandros Karatzoglou, Linas Baltrunas, Karen Church, and Matthias Böhmer. 2012. Climbing the app wall: En-

abling mobile app discovery through context-aware recommendations. In Proceedings of the 21st ACM International

Conference on Information and Knowledge Management. ACM, 2527–2530.

[17] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In Proceedings of 3rd Interna-

tional Conference on Learning Representations. 1–14.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-supervised classification with graph convolutional networks. In Pro-

ceedings of the International Conference on Learning Representations. 1–14.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems.

Computer 42, 8 (2009), 30–37.

[20] H. W. Kuhn and A. W. Tucker. 1951. Nonlinear programming. In Proceedings of the 2nd Berkeley Symposium on Math-

ematical Statistics and Probability. 481–492.

[21] Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng Chua. 2013. Addressing cold-start in app recommen-

dation: Latent user models constructed from twitter followers. In Proceedings of the 36th International ACM SIGIR

Conference on Research and Development in Information Retrieval. ACM, 283–292.

[22] Bin Liu, Deguang Kong, Lei Cen, Neil Zhenqiang Gong, Hongxia Jin, and Hui Xiong. 2015. Personalized mobile app

recommendation: Reconciling app functionality and user privacy preference. In Proceedings of the 8th ACM Interna-

tional Conference on Web Search and Data Mining. ACM, 315–324.

[23] Yao Ma, Suhang Wang, Chara C. Aggarwal, Dawei Yin, and Jiliang Tang. 2019. Multi-dimensional graph convolutional

networks. In Proceedings of the 2019 SIAM International Conference on Data Mining. SIAM, 657–665.

[24] Tong Man, Huawei Shen, Xiaolong Jin, and Xueqi Cheng. 2017. Cross-domain recommendation: An embedding and

mapping approach. In Proceedings of the International Joint Conference on Artificial Intelligence. 2464–2470.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in

vector space. In Proceedings of the 1st International Conference on Learning Representations. 1–11.

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words

and phrases and their compositionality. In Proceedings of the Advances in Neural Information Processing Systems.

3111–3119.

[27] Yabo Ni, Dan Ou, Shichen Liu, Xiang Li, Wenwu Ou, Anxiang Zeng, and Luo Si. 2018. Perceive your users in depth:

Learning universal user representations from multiple e-commerce tasks. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. 596–605.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network 55:21

[28] Yi Ouyang, Bin Guo, Tong Guo, Longbing Cao, and Zhiwen Yu. 2018. Modeling and forecasting the popularity

evolution of mobile apps: A multivariate Hawkes process approach. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies 2, 4 (2018), 182.

[29] Yi Ouyang, Bin Guo, Xinjiang Lu, Qi Han, Tong Guo, and Zhiwen Yu. 2019. Competitivebike: Competitive analysis

and popularity prediction of bike-sharing apps using multi-source data. IEEE Transactions on Mobile Computing 18, 8

(2019), 1760–1773.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning of social representations. In Pro-

ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 701–710.

[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI

Press, 452–461.

[32] Sebastian Ruder. 2017. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098

(2017).

[33] Ozan Sener and Vladlen Koltun. 2018. Multi-task learning as multi-objective optimization. In Proceedings of the Ad-

vances in Neural Information Processing Systems. 527–538.

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015. Line: Large-scale information

network embedding. In Proceedings of the 24th International Conference on World Wide Web. International World Wide

Web Conferences Steering Committee, 1067–1077.

[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2018. Graph

attention networks. In Proceedings of the International Conference on Learning Representations. 1–12.

[36] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee. 2018. Billion-scale commod-

ity embedding for e-commerce recommendation in Alibaba. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 839–848.

[37] Yaqing Wang, Chunyan Feng, Caili Guo, Yunfei Chu, and Jenq-Neng Hwang. 2019. Solving the sparsity problem in

recommendations via cross-domain item embedding based on co-clustering. In Proceedings of the 12th ACM Interna-

tional Conference on Web Search and Data Mining. ACM, 717–725.

[38] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. 2019. A comprehensive

survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24.

[39] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful are graph neural networks? In

Proceedings of the International Conference on Learning Representations. 1–17.

[40] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. 2018. Graph con-

volutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. 974–983.

[41] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. 2019. Graph transformer networks.

In Proceedings of the Advances in Neural Information Processing Systems. 11960–11970.

[42] R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. Retrieved from http://socialcomputing.asu.

edu.

[43] Kui Zhao, Yuechuan Li, Zhaoqian Shuai, and Cheng Yang. 2018. Learning and transferring ids representation in e-

commerce. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

1031–1039.

[44] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. 2018. Graph neural networks:

A review of methods and applications. arXiv preprint arXiv:1812.08434 (2018).

[45] Feng Zhu, Yan Wang, Chaochao Chen, Guanfeng Liu, Mehmet Orgun, and Jia Wu. 2018. A deep framework for

cross-domain and cross-system recommendations. In Proceedings of the International Joint Conference on Artificial

Intelligence.

[46] Hengshu Zhu, Hui Xiong, Yong Ge, and Enhong Chen. 2014. Mobile app recommendations with security and privacy

awareness. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 951–960.

[47] Konglin Zhu, Lin Zhang, and Achille Pattavina. 2017. Learning geographical and mobility factors for mobile applica-

tion recommendation. IEEE Intelligent Systems 32, 3 (2017), 36–44.

[48] Fuzhen Zhuang, Yingmin Zhou, Fuzheng Zhang, Xiang Ao, Xing Xie, and Qing He. 2017. Sequential transfer learning:

Cross-domain novelty seeking trait mining for recommendation. In Proceedings of the 26th International Conference

on World Wide Web Companion. 881–882.

Received March 2020; revised July 2020; accepted December 2020

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 4, Article 55. Publication date: April 2021.

http://socialcomputing.asu.edu
http://socialcomputing.asu.edu

