Data-Driven Function Calling Improvements in Large Language
Model for Online Financial QA

Xing Tang"
Shenzhen Technology University
Shenzhen, China

Hao Chen*
FiT, Tencent
Shenzhen, China

Shiwei Li
Huazhong University of Science and
Technology
Wuhan, China

Fuyuan Lyu Weijie Shi Lingjie Li
McGill University The Hong Kong University of Science Shenzhen Technology University
Montreal, Canada and Technology Shenzhen, China

Hong Kong SAR, China

Dugang Liu
Shenzhen University
Shenzhen, China

Weihong Luo®
Xiku Du
FiT, Tencent

Xiuqiang He™
Shenzhen Technology University
Shenzhen, China

Shenzhen, China

Abstract

Large language models (LLMs) have been incorporated into numer-
ous industrial applications. Meanwhile, a vast array of API assets is
scattered across various functions in the financial domain. An on-
line financial question-answering system can leverage both LLMs
and private APIs to provide timely financial analysis and informa-
tion. The key is equipping the LLM model with function calling
capability tailored to a financial scenario. However, a generic LLM
requires customized financial APIs to call and struggles to adapt to
the financial domain. Additionally, online user queries are diverse
and contain out-of-distribution parameters compared with the re-
quired function input parameters, which makes it more difficult
for a generic LLM to serve online users. In this paper, we propose
a data-driven pipeline to enhance function calling in LLM for our
online, deployed financial QA, comprising dataset construction,
data augmentation, and model training. Specifically, we construct a
dataset based on a previous study and update it periodically, incor-
porating queries and an augmentation method named AugFC. The
addition of user query-related samples will exploit our financial
toolset in a data-driven manner, and AugFC explores the possible
parameter values to enhance the diversity of our updated dataset.
Then, we train an LLM with a two-step method, which enables the
use of our financial functions. Extensive experiments on existing
offline datasets, as well as the deployment of an online scenario,
illustrate the superiority of our pipeline. The related pipeline has
been adopted in the financial QA of YuanBao', one of the largest
chat platforms in China.

“Both authors contributed equally to this research.
f Corresponding authors.
!https://yuanbao.tencent.com/chat/

990¢9

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

WWW °26, Dubai, United Arab Emirates

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2307-0/2026/04

https://doi.org/10.1145/3774904.3792813

CCS Concepts

« Information systems — Question answering; Web mining.

Keywords

Function Calling, Financial QA, Large language model

ACM Reference Format:

Xing Tang, Hao Chen, Shiwei Li, Fuyuan Lyu, Weijie Shi, Lingjie Li, Dugang
Liu, Weihong Luo, Xiku Du, and Xiuqiang He. 2026. Data-Driven Function
Calling Improvements in Large Language Model for Online Financial QA.
In Proceedings of the ACM Web Conference 2026 (WWW °26), April 13-17,
2026, Dubai, United Arab Emirates. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3774904.3792813

1 Introduction

Recently, large language models (LLMs) have emerged as a power-
ful tool, demonstrating remarkable capabilities in understanding,
generating, and reasoning with text [1, 3, 8]. These features enable
LLMs to seamlessly integrate with various web applications, includ-
ing online code copilots, online chatbots, and question-answering
systems. In finance and economics, various financial documents are
used to analyze and predict market trends [16]. Therefore, equipped
with LLMs, online financial question-answering (QA) systems have
shown promising progress in understanding and responding to
complex queries related to these financial documents [17, 32].
Building an online financial QA system powered by LLM is non-
trivial and requires specific efforts. Typically, in the financial sce-
nario, important financial information is often provided by external
APIs or functions and must be updated promptly, which restricts
the direct application of LLM in financial QA, as illustrated in the
first key point of Figure. 1. To address this, the LLM can be trained
to utilize timely external knowledge via function calling or tool
calling [12, 13, 15, 29], a technique that has been widely adopted
in agents [31, 34]. The core components of function calling are,
respectively, tool selection and parameter extraction based on the
query and function documents. Provided private APIs and func-
tions, LLM can retrieve the external up-to-date knowledge based

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://doi.org/10.1145/3774904.3792813
https://doi.org/10.1145/3774904.3792813

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Ql: What's the current USD Q2: Show me the transcript of Q3: What's tencent's stock
| R PTG [0 Bt
: call "700" today's price

l I

Large Language Model (LLM)

h l

Xing Tang, et al.

Y
%T‘ Tool I
< {
f— "

"get_enterprise_performance_meeting_contents”,

"description" "content of corporate performance “inputSchema"
exchange meetings", “properties"
Call "inputSchema’"

"description" "Currency Pair

type'": "string",
“description": "user query”

[(K [

"name": "name":

"parameters": { "parameters": {
"currency_pairs": "USDCNY" "query": "tencent 2024 Q4" 3

bl
N il

"name”:"get_real_time_stock_quotes”,
"get_currency_exchange_rate”, |"get_enterprise_performance_meeting_contents", | "parameters": {
"codes": "00700"

“stock_codes": { "required": ["currency_pairs"]

"type: "string”,

y)
“description": "stock code” } & ”
} (N 1o 2

“Start_dat
type "string",
“deseription" "start time"

real_time_stock_quotes”,
"real-time market data",

)

L

@ = © k2
Get the Real-time data Understand the private APT
)Y& Charllenge | x Charnllenge 2
Difficulty in retrieving Lack of domain-specific

real-time financial data function calling data
extraction

Recognize multiple nickname

M, | charenge 3) |
High diversity and
complexity in parameter

“type”: "string”,
"description": "end time"

¥

yper: "string",
"description” "xxx"

required: ["query’] b equired foodes']

Figure 1: The overview of the key points and corresponding challenges in the online financial QA system powered by LLM.

on the extracted parameters from the user query. Together with its
internal capability, the empowered LLM can give a more accurate
answer.

A simple approach is to introduce a commercial LLM equipped
with general function calling capabilities, directly serving user
queries [28]. While commercial LLMs generally perform well in
function calling, these models often struggle to provide accurate
and robust function calling capabilities for specialized scenarios
due to the lack of private training data [36]. As the example in Fig-
ure. 1 indicates, the function used to "get enterprise performance
meeting contents" is usually unique to financial analysis, which is
unavailable in the general function calling dataset. Hence, collecting
function calling data to train a financial tool-specific LLM is essen-
tial. Moreover, the financial APIs are usually highly customized,
while the queries are diverse. The third key point in Figure. 1 il-
lustrates this challenge. Invoking the function "get stock quotes”
requires extracting the company name as a parameter from the user
query. Some queries will directly specify the company name, while
some will give a nickname. For example, both "700" and "Goose
Factory" in queries refer to Tencent, where the code "700" is the
stock symbol of Tencent, and "Goose Factory" is the mascot of this
company. Therefore, the diversity of private datasets based on the
user queries poses another challenge in improving the performance
of function calling.

In this work, we design a data-driven pipeline to improve the
function calling in LLM for our online financial QA. Starting with an
annotated financial QA dataset following xLAM [37], our dataset is
periodically updated with both user queries and augmented datasets.
Specifically, constructing user query-related samples exploits the
existing toolset based on direct function call results in online in-
teraction. This exploitation is responsible for improving coverage
on the financial tool sets of our dataset. However, as previously
stated, the diversity poses a challenge for both the query and the
parameters. We thus propose an automated augmentation method
named AugFC to explore the possible queries containing parameter
values in our datasets. Based on the updated dataset, we further
train a language model that includes a supervised fine-tuning (SFT)
stage and a reinforcement learning stage, enabling the base model

to utilize financial tools aligned with our scenario. In summary, our
main contributions are as follows:

o We first identify the core challenges in building our online
financial QA system, providing practical lessons from indus-
trial applications.

e We develop a data-driven automated function calling pipeline
consisting of a dataset constructed, data augmentation, and
model training to enhance the base LLM for our online fi-
nancial QA system. The pipeline is effective in improving
the performance of function calling in the LLM.

e Extensive experiments on both the offline dataset and the on-
line scenario have been conducted to validate the superiority
of our method.

2 Related work

In this section, we provide a brief review of two topics related to
our work: financial QA and function calling.

2.1 Financial QA

Question-answering systems have already achieved remarkable
progress with the introduction of LLM. Most financial QA systems
focus on numerical reasoning to handle multi-step calculations and
extract relevant information from various data sources [27, 32, 38].
ZS-FinPYT and ZS-FinDSL [18, 19] introduce zero-shot techniques
for LLMs to perform complex numerical reasoning over financial
documents. A multi-agent framework is also adopted, incorporating
a critic agent that reflects on the reasoning steps and final answers
for each question [7]. Besides, some works are devoted to financial
text QA [5]. WeaverBird [33] is a dialogue system specifically for
the finance sector. Leveraging finetuned LLM on extensive financial
corpora, it provides informed responses to complex user queries.
Our work first gives how to incorporate function calling in LLM to
solve diverse online financial QA queries, which hopefully sheds
light on building industry financial QA.

2.2 Function Calling

Function calling or tool calling has represented a pivotal advance-
ment in empowering LLMs with dynamic interaction capabilities

Data-Driven Function Calling Improvements in Large Language Model for Online Financial QA

in the external environment [26, 34]. The array of this field mainly
focuses on two categories: data synthesis and model enhancement.
There are plenty of data synthesis methods for constructing a gen-
eral function calling dataset. Toolformer [22] enhances the LLM’s
ability by finetuning the base model with API calling datasets. Then,
ToolLLM [21] collects 16,464 real-world APIs, including multi-tool
usage, to finetune LLaMA and obtain ToolLLaMA. ToolACE [14]
and xLAM [37] utilize agents to collect tool use data, and also
emphasize the validation process to filter data [15]. ToolHop [35]
targets the multi-hop data with a query-driven data construction.
Autotools [23] combines tool encapsulation and tool programming
to empower LLM to automate the tool-use flow. All of these works
focus on general function calling capabilities, ignoring how to build
a dataset for a specific application, which is often abundant in
interaction data.

The enhancing paradigm of the base model shifts from fine-
tuning to reinforcement learning. Finetuning has been investigated
based on the proposed datasets [14, 21, 37]. Some modifications are
also proposed. Funreason [10] introduces a self-refinement multi-
scale loss to balance the reasoning and accuracy during finetuning.
The enterprise-scenario function calling [36] targets a specific do-
main and utilizes LoRa [11] for finetuning. Reinforcement learning
with verifiable reward has witnessed tremendous progress in LLM
training [8, 9, 28].Tool-star [6] and TooRL [20] pioneer the applica-
tion in tool calling. In our pipeline, we employ a two-step training
paradigm and provide an LLM tailored for our financial QA.

3 Methodology

First, we will give a formal definition of our problem. Next, we will
demonstrate our proposed data-driven pipeline, which includes
data construction, data augmentation, and model training. We will
elaborate on the design of each stage in this pipeline in detail.

3.1 Problem formulation

For an online financial QA system powered by LLM denoted as M,
there is a record of user queries Q and a toolset 2T ={ty, ty, -+, tn).
For a particular user query g € Q, there is a corresponding reference
tool-call list a to solve the problem. For the toolset, the tool can
be represented as t; = (name;, description;, parameters;), where
name; is the unique identifier of the tool, description; is the detailed
functionality of the tool, and parameters; is the set of parameters
used in this tool. Let # denote the input prompt, which includes ¢
and T, i.e. P = (g, T). Then the LLM will invoke the related tools,
ay = M(P), where ag is the actual generated tool-call list. Note that
the parameters; define a set of required parameters. The LLM will
determine the function ¢; and extract parameters p; from the query
to invoke the related function.Then the generation can be further
defined as, ay = [t1(p1),* -+, tm(pm)] where m is the total number
of invoked functions.

Our goal is to construct the dataset < ¢, a, T > following xLAM
format [37], and determine the model’s policy 7 : (¢,T) — a
with a set of rollouts {ry, -« ,rr,t1, -, tm}, where ry,--- ,rp are
reasoning process.

2We use the terms tool and function interchangeably as in a previous study.

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

3.2 The Data-driven pipeline

The overall data-driven pipeline is illustrated in Figure. 2. In the
initial setting, data construction will incorporate a small amount of
manually annotated data as seed data, which provides a basis for the
pipeline. There are four components in our pipeline. First, we will
automatically collect online user queries. The data construction and
augmentation will update the dataset in the updated stage. The first
task is to update the datasets with online queries, which enables
the dataset to exploit the user demands for the candidate function
in our toolset. The second task involves exploring the diversity
of queries, which utilize an automated method named AugFC to
augment the query as necessary. Notice that online data fully drives
both asks and updates the dataset aligned with the actual financial
QA patterns. Finally, the two-stage training is introduced to get
the policy based on the updated dataset, considering effectiveness
and efficiency. We will elaborate on these components in detail
afterwards.

3.2.1 Initial Settings. Before we delve into the pipeline, we first
introduce the seed data for the pipeline in our system.

To ensure that the data closely aligns with our scenarios, we
initially construct manually annotated data by financial experts.
Notice that although the LLM can synthesize the data, the annotated
data is better at reflecting the actual pattern in our financial QA
system, and this will lay a good foundation for the following stage.
We generally follow the xLAM format [37], which is denoted as
the tuple< g,a, T >. The experts will determine the a from T for
the selected query q. As stated in [36], the diversity, uniqueness,
consistency are three principles in our annotation. The pipeline
will be more stable and effective based on the high-quality seed
data buffer B.

3.2.2 Data collection. Although the annotated datasets cover a cer-
tain number of human-generated queries, users will likely provide
more diverse queries in an online setting. Hence, utilizing these
queries will enhance our dataset and reveal the actual pattern of
how users make use of the QA system.

The first step in our pipeline is to collect the online queries.
Once the user produces the query, the corresponding tool-call list
is generated by LLM. The pair < ¢, ay, T > will be set as a candidate
for our data buffer B. However, due to the number of queries being
too large to handle, the query will undergo a validation process.
With an embedding model E, the query can be validated if there
have already been identical queries in our buffer. After validation,
we denote the collected queries as By, which should be constructed
further and merged into B.

3.2.3 Data construction. After getting the new candidate queries,
we will construct the credible tool-call list for these queries. Notice
that we already have a tool-call list a, from the online LLM. To
preserve the expert’s work, we introduce a more powerful LLM, M,,
to generate the tool-call list, which serves as a reference. Specifically,
we retrieve the most similar queries in the buffer B to construct
the few-shot prompting® [4]. The generated tool-call list am, by
a powerful LLM will be compared with a, to double-check the
consistency. The inconsistent queries between online LLM M and

3All the prompt templates can be referred to the Appendix.

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Xing Tang, et al.

-

@

user Query

@?

Online FC Model

General LLM

Tool_call

Tool_call list

LLM-aware Generation

Double Check Consistency

Arready Em;/ \ Not Exist ° I'\/ \0

Guery Validator

Discard Bubfer_|
Guery - Tool_cal)

e N

Offine Daljae‘ Temp_2.

H identify Bind spots H /
8 Annotation | [~=| Lo___] . ‘/auam ~N__ 1. : =
(D VeriFication i::\:::mn
Expert Buffer_2 Multi Round Buffer_3 » -
(Guery- > Tool_cal) Distribution-awre (Guery- > Tool_call) || Trained FC Model New Online FC Model
K / \\eenmmm \\

Offiine Dataset Temp_3

Data Increment Check %@ %@
Pl Wik Plan | Without Plan
System Prompt Isclation

0

Instructionbased SFT
l
)
)
S2

Rule-based Reward RL

Data Collection ————> Data Construction ————>

Data Augmentation

-
(Au@FC) —> Model Training

Figure 2: The data-driven pipeline consisting of data collection, data construction, data augmentation, and model training.

powerful LLM M,, will further be annotated by financial experts,
and the consistent query will be merged into the buffer B.

In this process, we finally obtain high-quality question-tool pairs
< g, ag, T > by exploiting online user queries. Along with manually
annotated pairs, we construct a dataset that aligns both financial
experts’ and online users’ demands B =B N B,.

3.24 Data augmentation. The online queries in our financial QA
system are diverse, particularly in terms of parameter values, as
stated in Section 1. Typically, user-generated queries follow a power-
law distribution [2] in parameter values, which renders our dataset
inadequate to meet the diversity requirement in real-world scenar-
ios.

To mitigate this issue, we propose an automatic data augmenta-
tion method, AugFC, to enhance the diversity in parameter values.
We first need to identify which parameter is the "blind spot", mean-
ing the values of this parameter in our datasets have collapsed into
a few single values. We introduce information entropy as a mea-
sure of the information contained in the set of parameter values.
Given the dataset buffer B, the parameter value set is denoted as
pj= {p;}fil for each parameter p;. The global entropy for p; can
be calculated as follows,

) n n
HY =Sy, ﬁ" log, NP (1)
where n, is the count of the elements in the set.

We then perform semantic clustering, which groups these queries
into K clusters based on the semantic embeddings of the queries.
The tool will serve different semantic purposes for various semantic
query clusters. We also have a parameter value set p;‘ = {p;}f\i’; in
the cluster k. The entropy for the k-th cluster can then be defined
as follows,

nk nk

pj P P
ij = _Zpe‘bjﬁk lng Fk (2)

We formally define the condition to determine whether one param-
eter is a blind spot.

DEFINITION 1. A parameter p; is called blind spot parameter
Pj
— ng > 14, and for each cluster k, % < Tp.
G

The first condition indicates that the global entropy should ex-
ceed a threshold value. The reason is that certain global diversity
needs to be guaranteed, and the parameter with smaller entropy
should be exploited by updating new user queries during the data
construction stage to ensure quality, rather than at this stage. The
second one shows that the local diversity should not exceed a
certain ratio compared to the global diversity, indicating that the
distribution of the parameter collapses in this cluster.

With the identification of the blind spot of the parameter, we con-
duct multi-round distribution-aware generation, designing prompts
for LLM Mg, to generate the augmented data. Suppose the data
can be denoted as < g, t, pp >. We select the representative queries
in cluster k, denoted as {qzep }, as the context. Then the designed

prompt contains the related information Pguq ({ q,r:p }.q. HP? H If b 1, T).

The generated queries gaug = Maug(Paug) Will update the dataset
only if the cluster diversity is improved. Notice that the AugFC is
fully automatic, requiring no manual intervention.

Following previous studies [14, 36], we still require data valida-
tion and assembly in this process, which involves checking consis-
tency in the tool calling and verifying the accuracy of parameters
using the LLM. During data assembly, we will remove duplicates
from the merging dataset, and the updated dataset will be used for
model training.

3.2.5 Model training. As reinforcement learning with verifiable
rewards (RLVR) has become prevalent in training reasoning large
language models for reasoning [8], we adopt a two-step method

Data-Driven Function Calling Improvements in Large Language Model for Online Financial QA

to enhance the accuracy and stability of LLM’s tool-calling capa-
bility, including supervised finetuning (SFT) and reinforcement
learning (RL). However, the longer chain-of-thought will introduce
significant computational overhead in inference [25]. Especially in
financial QA, some queries aim to obtain up-to-date information
via function calling, and a lengthy chain-of-thought will harm the
user experience. Therefore, our training needs to strike a balance
between accuracy and efficiency.

In the SFT step, we will finetune the model with our samples,
which provide a good starting point for the next step. The samples
consist of two types: reasoning samples {ry,- -+ ,r, t1,- -+, tm} and
direct calling samples {t1,- - - , t;,}. To finetune a model with the
mixup of data, we design a prompt isolation as shown in Figure 3.
The system prompt 1 will output reasoning tokens enclosed in <
plan > --- < [plan > before the tool call enclosed in < tool_call >
,+++,< [tool_call >, and the system prompt 2 will output the tool
call directly. During inference, we can use prompt 2 to save the
number of tokens for reasoning when necessary.

System Prompt 1: Output reasoning before tool call

Role:
You are a helpful Al assistant with access to various tools...

Requirement:
* Provide your reasoning process in natural language.
* Output the tool_call in the specified json format.

Output format:

nwnn

<plan> [Your detailed reasoning]</plan>
<tool_call>[The actual function calll</tool_call>

nwn

System Prompt 2: Output tool call directly

Role:
You are a helpful Al assistant with access to various tools. ..

Requirement:
* Do not provide your reasoning process.
* Directly output the tool_call in the specified json format.

Output format:

nwn

<tool_call>[The actual function call]l</tool_call>

nwin

Figure 3: The prompt template for prompt isolation.

In the RL step, we adopt a similar rule-based reward formulation
that combines format and correctness components. The format
reward R rormar € {0, 1} checks whether the model output is con-
sistent with the data format used in the SFT step:

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

1, if the format is consistent with the input data

Rformm - {O, otherwise
®3)
As to correctness components, we decompose the reward into
three components. Suppose the generated tool call list is a; =
{ts1(Pg1) - -+ » tgm(pgm) } and the reference answer is a, = {t,1(pr1),
-+ trm(Prm)}, we define three components as follows:
e Tool call list retrieval:

Precision X Recall

Fly=2x ——— 220
Precision + Recall
.. agNa a.Na
where Precision = -———, Recall = < —.
9 r

e Parameter name key retrieval:
1 .
Flp = ;Zifl(l),

N PrecisionxRecall s PgiNpri _
where f1(i) =2 X Precisior peear] » Precision = et , Recall =
PgiNpri

pri
e Parameter value exact matching:

1
EM = szzlﬂ(pgi[k] = prilk]),

where pg;[k] and p,;[k] represent the parameter values with
respect to the i-th parameter.

Combining these three values, we get the correctness reward:
Reorrect = F1; + Flp +EM (4)

Based on the final reward, we can optimize the policy 7 by
GRPO [20]:
7(si1Q)

Totd (5:1Q)

l—e1+0A(sl0) O

Jorpro(0) =Eg-p Esz, [min(Ai(silQ),

o 7(silQ)
cip(———=,
P reta(si10)
— PKL(z | 7rer)]
where A; is the group normalized advantage. We get a model that

can output the reasoning tokens or directly output the function
calling results.

4 Offline experiments

Due to our pipeline targets in the online setting, we primarily
conduct extensive offline experiments to verify two key components
of our pipeline: data augmentation and model training.

We first validate our AugFC based on the setting in which it is
employed, using the existing benchmark dataset. We also employ
our training method on different sizes of base models to verify its
superiority. The five main research questions need to be answered
as follows:

e RQ1: How can our AugFC improve the performance on different
benchmark datasets with some seed data?

RQ2: Do our methods really mitigate the blind spots?

¢ RQ3: How does the performance vary with the 7, and 7, in our
AugFC?

RQ4: What is the role of some key components in AugFC?
RQ5: How does our training method perform compared with
existing function calling methods?

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

4.1 Experimental settings

4.1.1 Datasets. Considering our single-hop financial QA, we in-
troduce six benchmark datasets to evaluate our method. The API-
Bank [12] comprises two versions, which include 314 tool-use
dialogues and 753 API calls, evaluating models’ ability to invoke a
known API(L-1) or retrieve and call APIs from a candidate list(L2).
Tool-Alpaca [26] contains 271 tool-use instances in 50 categories.
Seal-Tools [30] is one of the extensive and recent benchmarks,
with 4,076 automatically generated APIs across various life do-
mains. Nexus Raven Evaluation [24] consists of 318 test examples
across 65 distinct APIs. Lastly, we sample xLAM-small at a ratio
of 0.1 from xXLAM-60k [37], which utilizes over 3,673 APIs across
21 categories from ToolBench [21].

4.1.2 Metrics. The tool selection can be evaluated as a multi-class
classification task, where each function tool category is treated as
a class. Then, a confusion matrix is constructed, where the rows
represent the actual tool categories and the columns represent the
predicted categories. With the confusion matrix, we can adopt the
F1 score to evaluate the model’s capability to select tools.

4.1.3 Base models training. The language models we adopt in train-
ing are the Qwen2.5 series [3], whose sizes range from 1.5B to 7B
and 32B. We first sample 90% xLAM-60k as a seed dataset, and
employ our AugFC to generate augmented data. The combined
dataset is then used for training our model. For comparison with
other existing function calling methods, we directly adopt the open-
sourced model with different model sizes, including the xLAM [37]
series and the Hammer [13] series.

4.2 ROQ1: Overall performance of data
augmentation

To evaluate the data augmentation, we compared the performance
of models trained on different datasets. Specifically, the vanilla
represents the base model, relying on the base model’s capability
to invoke a function. The src-only denotes model training based
on our sampled xLAM-60k, while the aug-only uses augmented
data based on the src-only model with our AugFC. src+aug is our
combined dataset, which is consistent with our pipeline. The overall
performance is given in Table 1.

Based on the results, we make the following observations. First,
the base model’s function calling capability fails to meet the accu-
racy requirements. Notably, the small model can hardly achieve
comparable performance with trained models, which justifies the
need to investigate this problem. Second, the src-only data performs
better than the aug-only data, indicating that the augmented data
cannot achieve comparable performance in the absence of the orig-
inal data and sometimes degrades its performance. Ultimately, our
combined dataset, which encompasses both source and augmented
data, yields the best performance on average. This further validates
the effectiveness of our AugFC.

4.3 RQ2: The number of blind spots

The key concept in AugFC is the existence of blind spots. We intro-
duce a powerful language model to generate related data and repair
blind spots. Hence, we will answer whether the number of blind
spots decreases with each iteration. We utilize three different LLMs

Xing Tang, et al.

Our Method: Effective Blind Spot Reduction

Random Sampling: No Effective Reduction

x s
e
el /\/
e

Iteration teration

Figure 4: The number of blind spots to repair with different
LLMs.

as generated LLMs, including both commercial and open-source
models, as shown in Figure 4, including Claude-4 4, Deepseek-v3.1°,
and Qwen2.5-72B-instruct °.

Meanwhile, we also use random sampling as a comparison, which
draws data directly from users’ online queries. It is evident that
our method significantly reduces blind spots compared to random
sampling across three main LLMs. Moreover, random sampling may
introduce new blind spots due to its random nature.

4.4 RQ3: The effect of hyperparameters.

Figure 5: The heatmap illustrating how 7, and 7;, affects the
performance resepectively.

Referring to Definition 1, two key hyperparameters 7, and 7,
determine the blind spot together. Therefore, we need to investigate
how these two hyperparameters affect our pipeline. We do a grid
search on two hyperparameters, where 7, € {1.0,1.5,2.0,2.5,3.0}
and 75, € {0.05,0.1,0.15,0.2,0.25} for each size of base model. The
heat maps are illustrated in Figure 5.

Notice that the 7, is not the largest one that leads to better
performance. The reason is that the large one will filter out some
queries that do not need to be augmented to conquer blind spots
with data augmentation. Meanwhile, 7;, is not the smallest one
that leads to better performance, which indicates the difficulty in
repairing blind spots when the parameter distribution collapses too
much.

4.5 RQ4: The ablation study of AugFC

To verify the effectiveness of the components in AugFC, we con-
duct an ablation study of AugFC. The first one is w/o blind spots,
which uses random sampling instead of blind spots detection. The
second is w/o designed prompt, which uses a plain prompt without
distribution information. Lastly,w/o multi-round indicates that we

4https://claude.ai/
Shttps://chat.deepseek.com/
®https://chat.qwen.ai/

Data-Driven Function Calling Improvements in Large Language Model for Online Financial QA

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

API-Bank API-Bank N
Model Size | Training dataset an an Tool-Alpaca Seal-Tools CXUS - YLAM-small Avg
L1 L2 Raven

vanilla 0.6525 0.4293 0.4290 0.7491 0.4988 0.5577 0.5527
src-only 0.7826 0.6533 0.6084 0.8865 0.5348 0.5934 0.6765
Qwen2.5-1.5B == e —== 0
aug-only 0.6973 0.4992 0.4242 0.8551 0.7500 0.6857 0.6519
src+aug 0.7226 0.6648 0.6233 0.8898 0.7840 0.7288 0.7256
vanilla 0.6985 0.6036 0.6158 0.8083 0.7283 0.5914 0.6743
src-only 0.8295 0.6529 0.6745 0.9426 0.7892 0.7428 0.7719
Qwen2.5-7B 2.7%40 V.7694 0.7719
aug-only 0.7776 0.5824 0.5808 0.9116 0.6238 0.8038 0.7133
src+aug 0.8002 0.6440 0.6667 0.9492 0.8901 0.8165 0.7856
vanilla 0.7988 0.6304 0.6448 0.9339 0.8266 0.7135 0.7580
src-only 0.8325 0.5433 0.6792 0.9485 0.8807 0.7736 0.7763
Qwen2.5-32B et === e —
aug-only 0.7771 0.5357 0.6308 0.9129 0.8624 0.8282 0.7579
src+aug 0.8416 0.6501 0.6775 0.9494 0.8682 0.8479 0.8058

Table 1: The overall performance to validate our AugFC. The vanilla denotes the base model without any training, the src-only
denotes we only use the seed data, aug-only means the augmented data is used, and src+aug represents the combined dataset.
All results are measured using the F1 score. The best results are bold, and the second-best results are underlined.

only use a single round to generate the augmented data. The results
averaged on the benchmark datasets are illustrated in Table 2.

From the results, we conclude that the designed prompt has the
most significant impact on performance, with reductions of 7.4%,
6.1%, and 4.2% on the three-sized models. The designed prompt
directly determines the quality of the generated samples. The com-
ponent of blind spots also significantly affects performance, because
it provides information on which parameters need to be augmented.
The absence of multi-round also degrades the performance, indicat-
ing that multi-round is also necessary. The overall ablation further
verifies the effectiveness of our AugFC.

Model AugFC blint;/;ots design::i/(;)rompt multt't/r"(;und
Qwen2.5-1.5B ‘ 0.726 0.689 0.672 0.695
Qwen2.5-7B ‘ 0.786 0.742 0.738 0.752
Qwen2.5-32B ‘ 0.806 0.765 0.772 0.780

Table 2: The ablation study of AugFC. The results are the
averages of the six benchmark datasets.

4.6 RQ5: The effectiveness of two-step method

Lastly, we conduct experiments to verify our proposed two-step
method. We compare Hammer, xLAM, and Qwenz2.5 with our model
on six benchmark datasets. xLAM uses the SFT approach, further
aligning model checkpoints with the DP method. Hammer only
adopts the finetuning step. Notice that the maximum size of the
hammer series is 7B. Both xLAM-1.3B, xLAM-7B, and the Hammer
series are trained on the xLAM-60k dataset, while the Qwen2.5
models serve as the base models. The results are demonstrated in
Table 3.

The base model performs the worst, which is in accordance with
the conclusions based on Table 1. It is then clear that our training

method outperforms the other two across all model sizes, indicating
that the two-step method is superior to other finetuning methods.

5 Online experiments

Our data-driven pipeline is primarily centered on the online setting
in FiT, Tencent. We also conduct various experiments on our online
financial QA systems, which have been integrated into Yuanbao.

5.1 Online system

We first briefly present our online financial QA system in Figure 6.
The system consists of four components: planner, function call,
reranker, and generator. The planner will provide the subqueries
based on the tool list and the user query. The function call is where
our pipeline works. After our pipeline generates the tool response,
the reranker will rerank the inputs according to relevance and
other constraints. A generator will output the answer. Obviously,
the function call component mainly determines the quality of the
answer by involving tools.

5.2 Online results

In the online setting, we deploy two pipelines in the function call.
One is our data-driven pipeline, and another one is without our
pipeline. Specifically, we have an annotated dataset named on-
line_src at the beginning. After our pipeline, the augmented dataset
online_aug is then obtained. The base model only trains the model
with online_src using SFT, whereas our pipeline provides a model
with online_aug.

The online metrics encompass both automated and manual ones.
The automated ones consist of F1 score and Tool Execution Rate.
The F1 score is consistent with our offline experimental setting,
indicating accuracy. The tool execution rate refers to the success
rate of tool execution in a real-world environment, indicating the
reliability of the pipeline. The manual ones include Final answer
accuracy and GBS ratio. The final answer accuracy is checked by
determining whether the final answer is aligned with the reference

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

Xing Tang, et al.

. API-Bank API-Bank Nexus

Model Size Model Type L1 L2 Tool-Alpaca Seal-Tools Raven xLAM-small Avg
Qwen2.5-1.5B 0.6525 0.4293 0.4290 0.7491 0.4988 0.5577 0.5527
15B xLAM-1.3B-fc 0.8370 0.6432 0.5058 0.8043 0.5480 0.5368 0.6459
: Hammer-1.5B 0.7230 0.5971 0.5348 0.8865 0.5688 0.5192 0.6382
ours 0.7226 0.6048 0.6233 0.8898 0.7840 0.7288 0.7256
Qwen2.5-7B 0.6985 0.6036 0.6158 0.8083 0.7283 0.5914 0.6743
7B xLAM-7B-fc 0.8069 0.6424 0.5896 0.7687 0.5409 0.6378 0.6644
Hammer-7B 0.8311 0.6598 0.6250 0.8987 0.7464 0.6535 0.7358
ours 0.8002 0.6440 0.6667 0.9492 0.8901 0.8165 0.7856
Qwen2.5-32B 0.7988 0.6304 0.6448 0.9339 0.8266 0.7135 0.7580
39B xLAM-2-32B-fc 0.8270 0.6000 0.6597 0.9049 0.8573 0.6985 0.7652
ours 0.8416 0.6501 0.6775 0.9494 0.8682 0.8479 0.8058

Table 3: The comparison of our two-step training model with existing models. All results are measured using the F1 score. The
best results are bold, and the second-best results are underlined.

SubQ- (>§\% Tool
L @) %
Tools List e \‘\‘I %}\% oo
— - SUba-3 \(\Q
Planner
User Query SUbQ-i }fé Took|
Input SubQuery Tools

ElE

- E g =

DatoBase Reranker L Generator Answer

58

Tool response

Tool response

Figure 6: The overview illustration of the online financial QA system. Our pipeline is marked as red in the whole system.

GBS Ratio

Performance Comparison (online_aug vs online_src)

0,839 0.8702

08 0.7784 Good

0.7226

72%
0.6042
0.6 05528

Same
Method 8D
online_src
online_aug Bad

re
weion R

o .
o0\ BX

fu

Figure 7: The online results measured by four metrics.

answer, ignoring the intermediate output. The GBS ratio is Good:
Bad: Same ratio, which is an evaluation metric used to assess the
impact of changes in complex systems manually.

A query will traverse the entire system, whether or not our
pipeline is involved, and the online metrics will measure both re-
sults. We evaluate 350 end-to-end query-answer pairs, which in-
volve nearly 2,000 pairs of query and tool-call list. The results are
demonstrated in Figure 7. For the automated metrics, the F1 score
improves by 39.1%, and the tool execution rate gains 40.7% im-
provements. For manual metrics, final answer accuracy gains 20.3%
improvements, and the GBS ratio has 72% good results compared
with 16% bad ones. It can be concluded that our pipeline is superior
to the baseline and meets the requirements for full deployment on
the system.

Moreover, we randomly sampled 500 instances (10% of the aug-
mented dataset) and assigned them to two experts for independent
review. 90% of the augmented data are directly usable, 6% contain
minor issues that can be easily corrected, and only 4% exhibit severe
errors requiring discarding.

6 Conclusion

In this paper, we present a data-driven pipeline to improve function
calling in LLM for our online financial QA system. The pipeline
collects online user queries to exploit the toolset and proposes a
data augmentation method, AugFC, to explore potential queries,
thereby addressing the blind spots in the query space. A two-step
training method is then introduced to enhance the capability to
call functions. We hope our work can provide practitioners with
experience of deploying LLMs in real-world scenarios, and the
data-driven approach will offer a new perspective on LLM applica-
tions. In the future, we will extend our pipeline to include multiple
tool dependencies or cross-module call scenarios to further verify
effectiveness.

7 Acknowledgement

We thank the support of the Shenzhen Technology University
School-level (N0.20251061020002), Scientific Research Capacity En-
hancement Program for Key Construction Disciplines in Guang-
dong Province (N0.2024ZDJS063), the National Natural Science
Foundation of China(NSFC) (No. 62506238).

Data-Driven Function Calling Improvements in Large Language Model for Online Financial QA

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

[10

[11

[12

(13

[14

(15

(16

(17

[18

[19

]

]

]

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Lada A Adamic and Bernardo A Huberman. 2000. Power-law distribution of the
world wide web. science 287, 5461 (2000), 2115-2115.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan,
Wenbin Ge, Yu Han, Fei Huang, et al. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609 (2023).

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Jian Chen, Peilin Zhou, Yining Hua, Loh Xin, Kehui Chen, Ziyuan Li, Bing Zhu,
and Junwei Liang. 2024. FinTextQA: A Dataset for Long-form Financial Question
Answering. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 6025-6047.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu
Mao, Guorui Zhou, Zhicheng Dou, and Ji-Rong Wen. 2025. Tool-Star: Empowering
LLM-Brained Multi-Tool Reasoner via Reinforcement Learning. arXiv preprint
arXiv:2505.16410 (2025).

Sorouralsadat Fatemi and Yuheng Hu. 2024. Enhancing Financial Question
Answering with a Multi-Agent Reflection Framework. In Proceedings of the 5th
ACM International Conference on Al in Finance (Brooklyn, NY, USA) (ICAIF 24).
Association for Computing Machinery, 530-537.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu,
Runxin Xu, Ruoyu Zhang, Shirong Ma, Xiao Bi, et al. 2025. DeepSeek-R1 in-
centivizes reasoning in LLMs through reinforcement learning. Nature 645, 8081
(2025), 633-638.

Bingguang Hao, Maolin Wang, Zengzhuang Xu, Yicheng Chen, Cunyin Peng,
Jinjie Gu, and Chenyi Zhuang. 2025. Exploring Superior Function Calls via
Reinforcement Learning. CoRR abs/2508.05118 (2025). https://doi.org/10.48550/
arXiv.2508.05118

Bingguang Hao, Maolin Wang, Zengzhuang Xu, Cunyin Peng, Yicheng Chen,
Xiangyu Zhao, Jinjie Gu, and Chenyi Zhuang. 2025. FunReason: Enhancing
Large Language Models’ Function Calling via Self-Refinement Multiscale Loss
and Automated Data Refinement. arXiv preprint arXiv:2505.20192 (2025).
Edward] Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large
language models. ICLR 1, 2 (2022), 3.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu,
Zhoujun Li, Fei Huang, and Yongbin Li. 2023. API-Bank: A Comprehensive
Benchmark for Tool-Augmented LLMs. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Singapore, 3102-3116.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu Nie, Junwei Liao, Jun Wang,
Xiaoyun Mo, Jiamu Zhou, Cheng Cheng, Yin Zhao, Jun Wang, and Weinan Zhang.
2025. Robust Function-Calling for On-Device Language Model via Function
Masking. In The Thirteenth International Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025. OpenReview.net.

Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanging Yu, Zezhong WANG, et al. [n.d.]. ToolACE:
Winning the Points of LLM Function Calling. In The Thirteenth International
Conference on Learning Representations.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane,
Juntao Tan, Weiran Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang,
Silvio Savarese, Juan Carlos Niebles, Huan Wang, Shelby Heinecke, and Caiming
Xiong. 2024. APIGen: Automated Plpeline for Generating Verifiable and Diverse
Function-Calling Datasets. In Advances in Neural Information Processing Systems,
Vol. 37. 54463-54482.

Zhuang Liu, Degen Huang, Kaiyu Huang, Zhuang Li, and Jun Zhao. 2020. Fin-
BERT: A Pre-trained Financial Language Representation Model for Financial
Text Mining. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJTCAI 2020. ijcai.org, 4513-4519.

Yugi Nie, Yaxuan Kong, Xiaowen Dong, John M Mulvey, H Vincent Poor, Qing-
song Wen, and Stefan Zohren. 2024. A survey of large language models
for financial applications: Progress, prospects and challenges. arXiv preprint
arXiv:2406.11903 (2024).

Karmvir Singh Phogat, Chetan Harsha, Sridhar Dasaratha, Shashishekar Ra-
makrishna, and Sai Akhil Puranam. 2023. Zero-Shot Question Answering over
Financial Documents using Large Language Models. CoRR abs/2311.14722 (2023).
https://doi.org/10.48550/arXiv.2311.14722

Karmvir Singh Phogat, Sai Akhil Puranam, Sridhar Dasaratha, Chetan Harsha,
and Shashishekar Ramakrishna. 2024. Fine-tuning Smaller Language Models for
Question Answering over Financial Documents. In Findings of the Association for
Computational Linguistics: EMINLP 2024, Miami, Florida, USA, November 12-16,

[20]

[21

[22

~
&

[24

[25

[26

~
=

(28]

[29

'@
=

[31

[32

[33

&
=

[35

[36

[37

[38

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates

2024. Association for Computational Linguistics, 10528-10548.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-
Tiir, Gokhan Tur, and Heng Ji. 2025. Toolrl: Reward is all tool learning needs.
arXiv preprint arXiv:2504.13958 (2025).

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin,
Xin Cong, Xiangru Tang, Bill Qian, et al. [n.d.]. ToolLLM: Facilitating Large
Language Models to Master 16000+ Real-world APIs. In ICLR 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli,
Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves to use tools. Advances in
Neural Information Processing Systems 36 (2023), 68539-68551.

Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen,
Dawei Yin, Suzan Verberne, and Zhaochun Ren. 2025. Tool learning in the wild:
Empowering language models as automatic tool agents. In Proceedings of the
ACM on Web Conference 2025. 2222-2237.

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu, Brian Yu, Damon Mosk-
Aoyama, Kurt Keutzer, Jiantao Jiao, and Jian Zhang. 2023. Nexusraven: a
commercially-permissive language model for function calling. In NeurIPS 2023
Foundation Models for Decision Making Workshop.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi
Yuan, Hongyi Liu, Andrew Wen, Shaochen Zhong, Na Zou, et al. 2025. Stop
overthinking: A survey on efficient reasoning for large language models. arXiv
preprint arXiv:2503.16419 (2025).

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han, Qiao Liang, Boxi Cao,
and Le Sun. 2023. Toolalpaca: Generalized tool learning for language models
with 3000 simulated cases. arXiv preprint arXiv:2306.05301 (2023).

Zichen Tang, Haihong E, Ziyan Ma, Haoyang He, Jiacheng Liu, Zhongjun Yang,
Zihua Rong, Rongjin Li, Kun Ji, Qing Huang, Xinyang Hu, Yang Liu, and Qianhe
Zheng. 2025. FinanceReasoning: Benchmarking Financial Numerical Reasoning
More Credible, Comprehensive and Challenging. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics ACL 2025,. Association
for Computational Linguistics, 15721-15749.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen,
Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian Chen, et al. 2025. Kimi k2:
Open agentic intelligence. arXiv preprint arXiv:2507.20534 (2025).

Maolin Wang, Yingyi Zhang, Cunyin Peng, Yicheng Chen, Wei Zhou, Jinjie Gu,
Chenyi Zhuang, Ruocheng Guo, Bowen Yu, Wanyu Wang, et al. 2025. Function
Calling in Large Language Models: Industrial Practices, Challenges, and Future
Directions. (2025).

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang
Chen. 2024. Seal-Tools: Self-instruct Tool Learning Dataset for Agent Tuning
and Detailed Benchmark. Springer-Verlag, Berlin, Heidelberg, 372-384.
Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming
Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 2025. The rise and potential of
large language model based agents: A survey. Science China Information Sciences
68, 2 (2025), 121101.

Qiangian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru
He, Mengxi Xiao, Dong Li, Yongfu Dai, Duanyu Feng, et al. 2024. Finben: A
holistic financial benchmark for large language models. Advances in Neural
Information Processing Systems 37 (2024), 95716-95743.

Siqiao Xue, Fan Zhou, Yi Xu, Ming Jin, Qingsong Wen, Hongyan Hao, Qingyang
Dai, Caigao Jiang, Hongyu Zhao, Shuo Xie, et al. 2023. Weaverbird: Empowering
financial decision-making with large language model, knowledge base, and search
engine. arXiv preprint arXiv:2308.05361 (2023).

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2023. React: Synergizing reasoning and acting in language models.
In International Conference on Learning Representations (ICLR).

Junjie Ye, Zhengyin Du, Xuesong Yao, Weijian Lin, Yufei Xu, Zehui Chen, Zaiyuan
Wang, Sining Zhu, Zhiheng Xi, Siyu Yuan, Tao Gui, Qi Zhang, Xuanjing Huang,
and Jiecao Chen. 2025. ToolHop: A Query-Driven Benchmark for Evaluating
Large Language Models in Multi-Hop Tool Use. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL. Association for Computational Linguistics, 2995-3021.

Guancheng Zeng, Wentao Ding, Beining Xu, Chi Zhang, Wengiang Han, Gang
Li, Jingjing Mo, Pengxu Qiu, Xinran Tao, Wang Tao, and Haowen Hu. 2024.
Adaptable and Precise: Enterprise-Scenario LLM Function-Calling Capability
Training Pipeline. CoRR abs/2412.15660 (2024). https://doi.org/10.48550/arXiv.
2412.15660

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai Hoang, Shirley Kokane,
Weiran Yao, Juntao Tan, Akshara Prabhakar, Haolin Chen, Zhiwei Liu, Yihao Feng,
Tulika Manoj Awalgaonkar, Rithesh R. N., Zeyuan Chen, Ran Xu, Juan Carlos
Niebles, Shelby Heinecke, Huan Wang, Silvio Savarese, and Caiming Xiong. 2025.
xLAM: A Family of Large Action Models to Empower Al Agent Systems. In
NAACL 2025. Association for Computational Linguistics, 11583-11597.
Fengbin Zhu, Wengiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang,
Jiancheng Lv, Fuli Feng, and Tat-Seng Chua. 2021. TAT-QA: A Question Answer-
ing Benchmark on a Hybrid of Tabular and Textual Content in Finance. In ACL.
Association for Computational Linguistics.

https://doi.org/10.48550/arXiv.2508.05118
https://doi.org/10.48550/arXiv.2508.05118
https://doi.org/10.48550/arXiv.2311.14722
https://doi.org/10.48550/arXiv.2412.15660
https://doi.org/10.48550/arXiv.2412.15660

WWW ’26, April 13-17, 2026, Dubai, United Arab Emirates Xing Tang, et al.

A Prompt list used in pipeline

Prompt: Tool Call Consistency Checker

Role: You are a Tool Call Consistency Checker.

You will receive:

- Generated user query: {{query}}

- Tool definition: {{tools}}

- Generated tool_call JSON: {{tool_call}}

Your task:
1. Carefully read the generated user query and understand the intended action.
2. Review the tool definition to understand each parameter’s meaning and constraints.
3. Check the parameter values in tool_call:
- Do they match the intent and details in the user query?
- Are they internally consistent (no contradictions between parameters)?
- Do they comply with the tool definition (value types, required fields, allowed ranges)?
4. Decide if the tool_call is logically correct:
- If all parameters reflect the query correctly and satisfy the tool’s definition, return "Consistent".
- If there is any mismatch or logical conflict, return "Inconsistent".

Output format requirements:
- Return a (JSON list) containing exactly one object:

{
"analysis": "...your reasoning here...",
"result": "Consistent" or "Inconsistent"
3
Rules:

- Do not output anything outside the JSON list.
- Be strict - even small inconsistencies should be marked "Inconsistent".

Data-Driven Function Calling Improvements in Large Language Model for Online Financial QA WWW °26, April 13-17, 2026, Dubai, United Arab Emirates

Prompt: Few-Shot Tool Call JSON Generator

Role:
You are an expert assistant capable of accurately selecting and calling functions (tools) to answer questions.

Input:
1. A set of FIVE few-shot examples, each containing:
- A user query
- A toolset with tool names, descriptions, and parameters
- The correct tool calls for that query in strict JSON list format
2. The CURRENT user query we need to process
3. The CURRENT toolset specification

Your task:

- Carefully study the five examples to understand how queries are mapped to tool calls.

- For the CURRENT query, use ONLY the tools provided in the CURRENT toolset, along with their descriptions, to determine
the exact functions to call and the correct values of their parameters.

- Parameter values MUST be derived accurately from the query context or the tool definitions.

- If no tool is required, output an empty list: [].

Output requirements:
- You MUST follow the exact JSON list format below.
- DO NOT include any extra explanations, comments, or text outside the JSON.
- Ensure parameter types are correct (string, integer, float, etc.).

Expected JSON format:

{
"name": "func_namel", "arguments": {"argument1": "valuel", "argument2": "value2"}},
(more tool calls as required)

1]

Few-shot Examples:
{{FEW_SHOT_EXAMPLES}}

Current Query:
{{CURRENT_QUERY}}

Current Toolset:
{{CURRENT_TOOLSET}}

Please output the JSON list strictly according to the specifications above.

WWW °26, April 13-17, 2026, Dubai, United Arab Emirates Xing Tang, et al.

Prompt: Multi-Round Distribution-Aware Counterfactual Generation

Role:
A specialist in mitigating data bias through multi-round distribution-aware counterfactual generation.

Multi-Round Generation Context (Step {step}):
We are in a multi-round generation process to mitigate distribution collapse in parameter "tool_param".

Initial State (Before Generation):
- Global Entropy: {initial_state[’global_entropy’]:.4f}
- Local Entropy: {initial_state[’local_entropy’]:.4f}
- Entropy Ratio: {initial_state[’entropy_ratio’]:.4f}
Current State (After {step-1} rounds):

- Global Entropy: {current_state[’global_entropy’]:.4f} (change: {current_state[’global_entropy’] -
initial_state[’global_entropy’]:+.4f})

- Local Entropy: {current_state[’local_entropy’]:.4f} (change: {current_state[’local_entropy’] -
initial_state[’local_entropy’]:+.4f})

- Entropy Ratio: {current_state[’entropy_ratio’]:.4f} (change: current_state[’entropy_ratio’] -

initial_state[’entropy_ratio’]:+.4f)
- Target: Increase entropy ratio to > blind_entropy_ration_threshold
- History: {history_desc}

Parameter Value Distributions:

Initial Distributions:

GLobal: {initial_global_dist_desc}, Local: {initial_local_dist_desc}
Current Distributions:

Glocal: {current_global_dist_desc}, Local: {current_local_dist_desc}

Instructions

* Contains an instruction for tool usage: """{instruction}"""
History
* Contains the user’s historical conversation information: """{input_text}"""

Original Example:
- Query: "{user_query}", Tool Call: {tool_call}

Stable Parameter Context:

To prevent creating new distribution collapses, the values for the following parameters in the ‘new_tool_call‘ MUST remain
consistent with their existing distributions.

Your primary goal is to fix ‘tool_param‘, but a CRITICAL secondary goal is to NOT disrupt these other parameters.

Task for Round {step}:

Based on the multi-round generation progress, generate NEW data points to further increase local parameter diversity:

1. x%xLearn from previous rounds*x: Analyze what values were generated and their impact.

2. *%xFocus on current gapsx*: Target parameter values that are still underrepresented in local distribution.

3. **Avoid redundancy*x: Don’t generate values that were already created in previous rounds.

4. xxStrategic selection*x: Choose values that will maximally increase the entropy ratio.

5. **Maintain coherence*x: Ensure semantic consistency within the cluster context.

6. *xDiversify query expressions*x: Generate queries with varied linguistic forms but similar semantics, avoiding mere
entity substitution.

7. =**Preserve tool_call logical coherence*xx: All parameter values in the generated tool_call must maintain logical
consistency.

JSON Output Format:

{
"new_query": "...",
"new_value_for_{tool_param.split('."')[-11}": "...",
"new_tool_call": "...",
"step_rationale": "Strategic explanation for Round {step}"
3]

	Abstract
	1 Introduction
	2 Related work
	2.1 Financial QA
	2.2 Function Calling

	3 Methodology
	3.1 Problem formulation
	3.2 The Data-driven pipeline

	4 Offline experiments
	4.1 Experimental settings
	4.2 RQ1: Overall performance of data augmentation
	4.3 RQ2: The number of blind spots
	4.4 RQ3: The effect of hyperparameters.
	4.5 RQ4: The ablation study of AugFC
	4.6 RQ5: The effectiveness of two-step method

	5 Online experiments
	5.1 Online system
	5.2 Online results

	6 Conclusion
	7 Acknowledgement
	References
	A Prompt list used in pipeline

