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Abstract
Large language models (LLMs) have been incorporated into numer-

ous industrial applications. Meanwhile, a vast array of API assets is

scattered across various functions in the financial domain. An on-

line financial question-answering system can leverage both LLMs

and private APIs to provide timely financial analysis and informa-

tion. The key is equipping the LLM model with function calling

capability tailored to a financial scenario. However, a generic LLM

requires customized financial APIs to call and struggles to adapt to

the financial domain. Additionally, online user queries are diverse

and contain out-of-distribution parameters compared with the re-

quired function input parameters, which makes it more difficult

for a generic LLM to serve online users. In this paper, we propose

a data-driven pipeline to enhance function calling in LLM for our

online, deployed financial QA, comprising dataset construction,

data augmentation, and model training. Specifically, we construct a

dataset based on a previous study and update it periodically, incor-

porating queries and an augmentation method named AugFC. The

addition of user query-related samples will exploit our financial
toolset in a data-driven manner, and AugFC explores the possible

parameter values to enhance the diversity of our updated dataset.

Then, we train an LLM with a two-step method, which enables the

use of our financial functions. Extensive experiments on existing

offline datasets, as well as the deployment of an online scenario,

illustrate the superiority of our pipeline. The related pipeline has

been adopted in the financial QA of YuanBao
1
, one of the largest

chat platforms in China.
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1 Introduction
Recently, large language models (LLMs) have emerged as a power-

ful tool, demonstrating remarkable capabilities in understanding,

generating, and reasoning with text [1, 3, 8]. These features enable

LLMs to seamlessly integrate with various web applications, includ-

ing online code copilots, online chatbots, and question-answering

systems. In finance and economics, various financial documents are

used to analyze and predict market trends [16]. Therefore, equipped

with LLMs, online financial question-answering (QA) systems have

shown promising progress in understanding and responding to

complex queries related to these financial documents [17, 32].

Building an online financial QA system powered by LLM is non-

trivial and requires specific efforts. Typically, in the financial sce-

nario, important financial information is often provided by external

APIs or functions and must be updated promptly, which restricts

the direct application of LLM in financial QA, as illustrated in the

first key point of Figure. 1. To address this, the LLM can be trained

to utilize timely external knowledge via function calling or tool

calling [12, 13, 15, 29], a technique that has been widely adopted

in agents [31, 34]. The core components of function calling are,

respectively, tool selection and parameter extraction based on the

query and function documents. Provided private APIs and func-

tions, LLM can retrieve the external up-to-date knowledge based

https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
https://creativecommons.org/licenses/by-nc-nd/4.0
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Q1: What's the current USD
to RMB exchange rate?

Q2: Show me the transcript of
Tencent's 2024 Q4 earnings
call

Q3: What's tencent's stock
trend / "Goose Factory" /
"700" today's price

Difficulty in retrieving
real-time financial data

Lack of domain-specific
function calling data

High diversity and
complexity in parameter
extraction

Chanllenge 1

Large Language Model（LLM）

Chanllenge 2 Chanllenge 3

{
    "name": "get_currency_exchange_rate",
    "description": "xxx",
    "inputSchema": {
        "properties": {
            "currency_pairs": {
                "type": "string",
                "description": "Currency Pair
Code"
            }
        },
        "required": ["currency_pairs"]
    }
}

{
    "name":
"get_enterprise_performance_meeting_contents",
    "description": "content of corporate performance
exchange meetings",
    "inputSchema": {
        "properties": {
            "query": {
                "type": "string",
                "description": "user query"
            },
            "stock_codes": {
                "type": "string",
                "description": "stock code"
            },
            "start_date": {
                "type": "string",
                "description": "start time"
            },
            "end_date": {
                "type": "string",
                "description": "end time"
            }
        },
        "required": [ "query"]
    }
}

{
    "name": "get_real_time_stock_quotes",
    "description": "real-time market data",
    "inputSchema": {
        "properties": {
            "codes": {
                "type": "string",
                "description": "xxx"
            }
        },
        "required": ["codes"]
    }
}

Tool 1 Tool 2

Tool 3

Call

[{
 "name":
"get_currency_exchange_rate",
    "parameters": {
      "currency_pairs": "USDCNY"
    }
}]

[{
 "name":
"get_enterprise_performance_meeting_contents",
    "parameters": {
      "query": "tencent 2024 Q4"
    }
}]

[{
 "name":"get_real_time_stock_quotes",
    "parameters": {
      "codes": "00700"
    }
}]

Get the Real-time data Understand the private API Recognize multiple nickname

Key 1 Key 2 key 3

Figure 1: The overview of the key points and corresponding challenges in the online financial QA system powered by LLM.

on the extracted parameters from the user query. Together with its

internal capability, the empowered LLM can give a more accurate

answer.

A simple approach is to introduce a commercial LLM equipped

with general function calling capabilities, directly serving user

queries [28]. While commercial LLMs generally perform well in

function calling, these models often struggle to provide accurate

and robust function calling capabilities for specialized scenarios

due to the lack of private training data [36]. As the example in Fig-

ure. 1 indicates, the function used to "get enterprise performance

meeting contents" is usually unique to financial analysis, which is

unavailable in the general function calling dataset. Hence, collecting

function calling data to train a financial tool-specific LLM is essen-

tial. Moreover, the financial APIs are usually highly customized,

while the queries are diverse. The third key point in Figure. 1 il-

lustrates this challenge. Invoking the function "get stock quotes"

requires extracting the company name as a parameter from the user

query. Some queries will directly specify the company name, while

some will give a nickname. For example, both "700" and "Goose

Factory" in queries refer to Tencent, where the code "700" is the

stock symbol of Tencent, and "Goose Factory" is the mascot of this

company. Therefore, the diversity of private datasets based on the

user queries poses another challenge in improving the performance

of function calling.

In this work, we design a data-driven pipeline to improve the

function calling in LLM for our online financial QA. Starting with an

annotated financial QA dataset following xLAM [37], our dataset is

periodically updatedwith both user queries and augmented datasets.

Specifically, constructing user query-related samples exploits the
existing toolset based on direct function call results in online in-

teraction. This exploitation is responsible for improving coverage

on the financial tool sets of our dataset. However, as previously

stated, the diversity poses a challenge for both the query and the

parameters. We thus propose an automated augmentation method

namedAugFC to explore the possible queries containing parameter

values in our datasets. Based on the updated dataset, we further

train a language model that includes a supervised fine-tuning (SFT)

stage and a reinforcement learning stage, enabling the base model

to utilize financial tools aligned with our scenario. In summary, our

main contributions are as follows:

• We first identify the core challenges in building our online

financial QA system, providing practical lessons from indus-

trial applications.

• Wedevelop a data-driven automated function calling pipeline

consisting of a dataset constructed, data augmentation, and

model training to enhance the base LLM for our online fi-

nancial QA system. The pipeline is effective in improving

the performance of function calling in the LLM.

• Extensive experiments on both the offline dataset and the on-

line scenario have been conducted to validate the superiority

of our method.

2 Related work
In this section, we provide a brief review of two topics related to

our work: financial QA and function calling.

2.1 Financial QA
Question-answering systems have already achieved remarkable

progress with the introduction of LLM. Most financial QA systems

focus on numerical reasoning to handle multi-step calculations and

extract relevant information from various data sources [27, 32, 38].

ZS-FinPYT and ZS-FinDSL [18, 19] introduce zero-shot techniques

for LLMs to perform complex numerical reasoning over financial

documents. Amulti-agent framework is also adopted, incorporating

a critic agent that reflects on the reasoning steps and final answers

for each question [7]. Besides, some works are devoted to financial

text QA [5]. WeaverBird [33] is a dialogue system specifically for

the finance sector. Leveraging finetuned LLM on extensive financial

corpora, it provides informed responses to complex user queries.

Our work first gives how to incorporate function calling in LLM to

solve diverse online financial QA queries, which hopefully sheds

light on building industry financial QA.

2.2 Function Calling
Function calling or tool calling has represented a pivotal advance-

ment in empowering LLMs with dynamic interaction capabilities
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in the external environment [26, 34]. The array of this field mainly

focuses on two categories: data synthesis and model enhancement.

There are plenty of data synthesis methods for constructing a gen-

eral function calling dataset. Toolformer [22] enhances the LLM’s

ability by finetuning the base model with API calling datasets. Then,

ToolLLM [21] collects 16,464 real-world APIs, including multi-tool

usage, to finetune LLaMA and obtain ToolLLaMA. ToolACE [14]

and xLAM [37] utilize agents to collect tool use data, and also

emphasize the validation process to filter data [15]. ToolHop [35]

targets the multi-hop data with a query-driven data construction.

Autotools [23] combines tool encapsulation and tool programming

to empower LLM to automate the tool-use flow. All of these works

focus on general function calling capabilities, ignoring how to build

a dataset for a specific application, which is often abundant in

interaction data.

The enhancing paradigm of the base model shifts from fine-

tuning to reinforcement learning. Finetuning has been investigated

based on the proposed datasets [14, 21, 37]. Some modifications are

also proposed. Funreason [10] introduces a self-refinement multi-

scale loss to balance the reasoning and accuracy during finetuning.

The enterprise-scenario function calling [36] targets a specific do-

main and utilizes LoRa [11] for finetuning. Reinforcement learning

with verifiable reward has witnessed tremendous progress in LLM

training [8, 9, 28].Tool-star [6] and TooRL [20] pioneer the applica-

tion in tool calling. In our pipeline, we employ a two-step training

paradigm and provide an LLM tailored for our financial QA.

3 Methodology
First, we will give a formal definition of our problem. Next, we will

demonstrate our proposed data-driven pipeline, which includes

data construction, data augmentation, and model training. We will

elaborate on the design of each stage in this pipeline in detail.

3.1 Problem formulation
For an online financial QA system powered by LLM denoted as𝑀 ,

there is a record of user queriesQ and a toolset
2 T = {𝑡1, 𝑡2, · · · , 𝑡𝑛}.

For a particular user query𝑞 ∈ Q, there is a corresponding reference
tool-call list 𝑎 to solve the problem. For the toolset, the tool can

be represented as 𝑡𝑖 = (𝑛𝑎𝑚𝑒𝑖 , 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖 , 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑖 ), where
𝑛𝑎𝑚𝑒𝑖 is the unique identifier of the tool,𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛𝑖 is the detailed

functionality of the tool, and 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑖 is the set of parameters

used in this tool. Let P denote the input prompt, which includes 𝑞

and T, i.e. P = (𝑞,T). Then the LLM will invoke the related tools,

𝑎𝑔 =𝑀 (P), where 𝑎𝑔 is the actual generated tool-call list. Note that
the 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑖 define a set of required parameters. The LLM will

determine the function 𝑡𝑖 and extract parameters 𝑝𝑖 from the query

to invoke the related function.Then the generation can be further

defined as, 𝑎𝑔 = [𝑡1 (𝑝1), · · · , 𝑡𝑚 (𝑝𝑚)] where𝑚 is the total number

of invoked functions.

Our goal is to construct the dataset < 𝑞, 𝑎,T > following xLAM

format [37], and determine the model’s policy 𝜋 : (𝑞,T) → 𝑎

with a set of rollouts {𝑟1, · · · , 𝑟𝐿, 𝑡1, · · · , 𝑡𝑚}, where 𝑟1, · · · , 𝑟𝐿 are

reasoning process.

2
We use the terms tool and function interchangeably as in a previous study.

3.2 The Data-driven pipeline
The overall data-driven pipeline is illustrated in Figure. 2. In the

initial setting, data construction will incorporate a small amount of

manually annotated data as seed data, which provides a basis for the

pipeline. There are four components in our pipeline. First, we will

automatically collect online user queries. The data construction and

augmentation will update the dataset in the updated stage. The first

task is to update the datasets with online queries, which enables

the dataset to exploit the user demands for the candidate function

in our toolset. The second task involves exploring the diversity

of queries, which utilize an automated method named AugFC to

augment the query as necessary. Notice that online data fully drives

both asks and updates the dataset aligned with the actual financial

QA patterns. Finally, the two-stage training is introduced to get

the policy based on the updated dataset, considering effectiveness

and efficiency. We will elaborate on these components in detail

afterwards.

3.2.1 Initial Settings. Before we delve into the pipeline, we first

introduce the seed data for the pipeline in our system.

To ensure that the data closely aligns with our scenarios, we

initially construct manually annotated data by financial experts.

Notice that although the LLM can synthesize the data, the annotated

data is better at reflecting the actual pattern in our financial QA

system, and this will lay a good foundation for the following stage.

We generally follow the xLAM format [37], which is denoted as

the tuple< 𝑞, 𝑎,T >. The experts will determine the 𝑎 from T for

the selected query 𝑞. As stated in [36], the diversity, uniqueness,
consistency are three principles in our annotation. The pipeline

will be more stable and effective based on the high-quality seed

data buffer B.

3.2.2 Data collection. Although the annotated datasets cover a cer-

tain number of human-generated queries, users will likely provide

more diverse queries in an online setting. Hence, utilizing these

queries will enhance our dataset and reveal the actual pattern of

how users make use of the QA system.

The first step in our pipeline is to collect the online queries.

Once the user produces the query, the corresponding tool-call list

is generated by LLM. The pair < 𝑞, 𝑎𝑔,T > will be set as a candidate

for our data buffer B. However, due to the number of queries being

too large to handle, the query will undergo a validation process.

With an embedding model 𝐸, the query can be validated if there

have already been identical queries in our buffer. After validation,

we denote the collected queries as B𝑔 , which should be constructed

further and merged into B.

3.2.3 Data construction. After getting the new candidate queries,

we will construct the credible tool-call list for these queries. Notice

that we already have a tool-call list 𝑎𝑔 from the online LLM. To

preserve the expert’s work, we introduce a more powerful LLM,𝑀𝑝 ,

to generate the tool-call list, which serves as a reference. Specifically,

we retrieve the most similar queries in the buffer B to construct

the few-shot prompting
3
[4]. The generated tool-call list 𝑎𝑀𝑔 by

a powerful LLM will be compared with 𝑎𝑔 to double-check the

consistency. The inconsistent queries between online LLM𝑀 and

3
All the prompt templates can be referred to the Appendix.
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User Query

Online FC Model 

Tool_call list

Query Validator

Already Exist

Discard

Not Exist

Buffer_1
（Query -> Tool_call）

Offline Dataset Temp_1

retrieval Few Examples

General LLM Tool_call

Construct Few-shot Prompt

LLM-aware Generation

Double Check Consistency

Y

Buffer_2
（Query- > Tool_call）

N

Expert

Annotation

Offline Dataset Temp_2

Data Increment Check

C1

C2

Ck

......

Query-based K-means Cluster

C1
C2

Ck

......

Identify Blind Spots

Buffer_3
（Query- > Tool_call）

Multi Round
Distribution-awre

Generation

Offline Dataset Temp_3

With Plan Without Plan

System Prompt Isolation

Instruction-based SFT

RUle-based Reward RL

Quality
Verification

Trained FC Model 

Evaluation
Passed

New Online FC Model 

Data Construction Data Augmentation
(AugFC) Model TrainingData Collection

Figure 2: The data-driven pipeline consisting of data collection, data construction, data augmentation, and model training.

powerful LLM 𝑀𝑝 will further be annotated by financial experts,

and the consistent query will be merged into the buffer B.
In this process, we finally obtain high-quality question-tool pairs

< 𝑞, 𝑎𝑔,T > by exploiting online user queries. Along with manually

annotated pairs, we construct a dataset that aligns both financial

experts’ and online users’ demands B = B ∩ B𝑔 .

3.2.4 Data augmentation. The online queries in our financial QA

system are diverse, particularly in terms of parameter values, as

stated in Section 1. Typically, user-generated queries follow a power-

law distribution [2] in parameter values, which renders our dataset

inadequate to meet the diversity requirement in real-world scenar-

ios.

To mitigate this issue, we propose an automatic data augmenta-

tion method, AugFC, to enhance the diversity in parameter values.

We first need to identify which parameter is the "blind spot", mean-

ing the values of this parameter in our datasets have collapsed into

a few single values. We introduce information entropy as a mea-

sure of the information contained in the set of parameter values.

Given the dataset buffer B, the parameter value set is denoted as

𝑝 𝑗 = {𝑝𝑖𝑗 }𝑁𝑖=1 for each parameter 𝑝 𝑗 . The global entropy for 𝑝 𝑗 can

be calculated as follows,

𝐻
𝑝 𝑗

𝐺
= −Σ𝑝∈𝑝 𝑗

𝑛𝑝

𝑁
log

2

𝑛𝑝

𝑁
, (1)

where 𝑛𝑝 is the count of the elements in the set.

We then perform semantic clustering, which groups these queries

into 𝐾 clusters based on the semantic embeddings of the queries.

The tool will serve different semantic purposes for various semantic

query clusters. We also have a parameter value set 𝑝𝑘𝑗 = {𝑝𝑖𝑗 }
𝑁𝑘

𝑖=1
in

the cluster 𝑘 . The entropy for the 𝑘-th cluster can then be defined

as follows,

𝐻
𝑝 𝑗

𝑘
= −Σ𝑝∈𝑝 𝑗

𝑛𝑘𝑝

𝑁𝑘

log
2

𝑛𝑘𝑝

𝑁𝑘

. (2)

We formally define the condition to determine whether one param-

eter is a blind spot.

Definition 1. A parameter 𝑝 𝑗 is called blind spot parameter

⇐⇒ 𝐻
𝑝 𝑗

𝐺
> 𝜏𝑔 , and for each cluster 𝑘 ,

𝐻
𝑝𝑗

𝑘

𝐻
𝑝𝑗

𝐺

< 𝜏𝑏 .

The first condition indicates that the global entropy should ex-

ceed a threshold value. The reason is that certain global diversity

needs to be guaranteed, and the parameter with smaller entropy

should be exploited by updating new user queries during the data

construction stage to ensure quality, rather than at this stage. The

second one shows that the local diversity should not exceed a

certain ratio compared to the global diversity, indicating that the

distribution of the parameter collapses in this cluster.

With the identification of the blind spot of the parameter, we con-

duct multi-round distribution-aware generation, designing prompts

for LLM 𝑀𝑎𝑢𝑔 to generate the augmented data. Suppose the data

can be denoted as < 𝑞, 𝑡, 𝑝𝑏 >. We select the representative queries

in cluster 𝑘 , denoted as {𝑞𝑟𝑒𝑝
𝑘

}, as the context. Then the designed

prompt contains the related informationP𝑎𝑢𝑔 ({𝑞𝑟𝑒𝑝𝑘
}, 𝑞, 𝐻𝑝𝑏

𝐺
, 𝐻

𝑝𝑏
𝑘
, 𝜏𝑏 ,T).

The generated queries 𝑞𝑎𝑢𝑔 =𝑀𝑎𝑢𝑔 (P𝑎𝑢𝑔) will update the dataset
only if the cluster diversity is improved. Notice that the AugFC is

fully automatic, requiring no manual intervention.

Following previous studies [14, 36], we still require data valida-

tion and assembly in this process, which involves checking consis-

tency in the tool calling and verifying the accuracy of parameters

using the LLM. During data assembly, we will remove duplicates

from the merging dataset, and the updated dataset will be used for

model training.

3.2.5 Model training. As reinforcement learning with verifiable

rewards (RLVR) has become prevalent in training reasoning large

language models for reasoning [8], we adopt a two-step method
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to enhance the accuracy and stability of LLM’s tool-calling capa-

bility, including supervised finetuning (SFT) and reinforcement

learning (RL). However, the longer chain-of-thought will introduce

significant computational overhead in inference [25]. Especially in

financial QA, some queries aim to obtain up-to-date information

via function calling, and a lengthy chain-of-thought will harm the

user experience. Therefore, our training needs to strike a balance

between accuracy and efficiency.

In the SFT step, we will finetune the model with our samples,

which provide a good starting point for the next step. The samples

consist of two types: reasoning samples {𝑟1, · · · , 𝑟𝐿, 𝑡1, · · · , 𝑡𝑚} and
direct calling samples {𝑡1, · · · , 𝑡𝑚}. To finetune a model with the

mixup of data, we design a prompt isolation as shown in Figure 3.

The system prompt 1 will output reasoning tokens enclosed in <

𝑝𝑙𝑎𝑛 > · · · < /𝑝𝑙𝑎𝑛 > before the tool call enclosed in < 𝑡𝑜𝑜𝑙_𝑐𝑎𝑙𝑙 >

, · · · , < /𝑡𝑜𝑜𝑙_𝑐𝑎𝑙𝑙 >, and the system prompt 2 will output the tool

call directly. During inference, we can use prompt 2 to save the

number of tokens for reasoning when necessary.

System Prompt 1: Output reasoning before tool call

## Role:
You are a helpful AI assistant with access to various tools. . .

## Requirement:
* Provide your reasoning process in natural language.

* Output the tool_call in the specified json format.

## Output format:
"""
<plan> [Your detailed reasoning]</plan>
<tool_call>[The actual function call]</tool_call>
"""

System Prompt 2: Output tool call directly

## Role:
You are a helpful AI assistant with access to various tools. . .

## Requirement:
* Do not provide your reasoning process.

* Directly output the tool_call in the specified json format.

## Output format:
"""
<tool_call>[The actual function call]</tool_call>
"""

Figure 3: The prompt template for prompt isolation.

In the RL step, we adopt a similar rule-based reward formulation

that combines format and correctness components. The format

reward R𝑓 𝑜𝑟𝑚𝑎𝑡 ∈ {0, 1} checks whether the model output is con-

sistent with the data format used in the SFT step:

R𝑓 𝑜𝑟𝑚𝑎𝑡 =

{
1, if the format is consistent with the input data

0, otherwise

(3)

As to correctness components, we decompose the reward into

three components. Suppose the generated tool call list is 𝑎𝑔 =

{𝑡𝑔1 (𝑝𝑔1), · · · , 𝑡𝑔𝑚 (𝑝𝑔𝑚)} and the reference answer is𝑎𝑟 = {𝑡𝑟1 (𝑝𝑟1),
· · · , 𝑡𝑟𝑚 (𝑝𝑟𝑚)}, we define three components as follows:

• Tool call list retrieval:

𝐹1𝑡 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 ,

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑎𝑔∩𝑎𝑟
𝑎𝑔

, 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑎𝑔∩𝑎𝑟
𝑎𝑟

.

• Parameter name key retrieval:

𝐹1𝑝 =
1

𝑚
Σ𝑖 𝑓 1(𝑖),

where 𝑓 1(𝑖) = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 , 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑝𝑔𝑖∩𝑝𝑟𝑖
𝑝𝑔𝑖

, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑝𝑔𝑖∩𝑝𝑟𝑖
𝑝𝑟𝑖

.

• Parameter value exact matching:

𝐸𝑀 =
1

𝑁
Σ𝑁
𝑘=1

I(𝑝𝑔𝑖 [𝑘] = 𝑝𝑟𝑖 [𝑘]),

where 𝑝𝑔𝑖 [𝑘] and 𝑝𝑟𝑖 [𝑘] represent the parameter values with

respect to the 𝑖-th parameter.

Combining these three values, we get the correctness reward:

R𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 𝐹1𝑡 + 𝐹1𝑝 + 𝐸𝑀 (4)

Based on the final reward, we can optimize the policy 𝜋 by

GRPO [20]:

𝐽𝐺𝑅𝑃𝑂 (𝜃 ) =𝐸𝑄∽B𝐸𝑠∽𝜋𝜃 [𝑚𝑖𝑛(
𝜋 (𝑠𝑖 |𝑄)
𝜋𝑜𝑙𝑑 (𝑠𝑖 |𝑄)

𝐴𝑖 (𝑠𝑖 |𝑄),

𝑐𝑙𝑖𝑝 ( 𝜋 (𝑠𝑖 |𝑄)
𝜋𝑜𝑙𝑑 (𝑠𝑖 |𝑄)

, 1 − 𝜖, 1 + 𝜖)𝐴𝑖 (𝑠𝑖 |𝑄))

− 𝛽𝐾𝐿(𝜋 ∥𝜋𝑟𝑒 𝑓 )]

(5)

where 𝐴𝑖 is the group normalized advantage. We get a model that

can output the reasoning tokens or directly output the function

calling results.

4 Offline experiments
Due to our pipeline targets in the online setting, we primarily

conduct extensive offline experiments to verify two key components

of our pipeline: data augmentation and model training.

We first validate our AugFC based on the setting in which it is

employed, using the existing benchmark dataset. We also employ

our training method on different sizes of base models to verify its

superiority. The five main research questions need to be answered

as follows:

• RQ1: How can our AugFC improve the performance on different

benchmark datasets with some seed data?

• RQ2: Do our methods really mitigate the blind spots?

• RQ3: How does the performance vary with the 𝜏𝑔 and 𝜏𝑏 in our

AugFC?

• RQ4: What is the role of some key components in AugFC?

• RQ5: How does our training method perform compared with

existing function calling methods?
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4.1 Experimental settings
4.1.1 Datasets. Considering our single-hop financial QA, we in-

troduce six benchmark datasets to evaluate our method. The API-
Bank [12] comprises two versions, which include 314 tool-use

dialogues and 753 API calls, evaluating models’ ability to invoke a

known API(L-1) or retrieve and call APIs from a candidate list(L2).

Tool-Alpaca [26] contains 271 tool-use instances in 50 categories.

Seal-Tools [30] is one of the extensive and recent benchmarks,

with 4,076 automatically generated APIs across various life do-

mains.Nexus Raven Evaluation [24] consists of 318 test examples

across 65 distinct APIs. Lastly, we sample xLAM-small at a ratio
of 0.1 from xLAM-60k [37], which utilizes over 3,673 APIs across

21 categories from ToolBench [21].

4.1.2 Metrics. The tool selection can be evaluated as a multi-class

classification task, where each function tool category is treated as

a class. Then, a confusion matrix is constructed, where the rows

represent the actual tool categories and the columns represent the

predicted categories. With the confusion matrix, we can adopt the

F1 score to evaluate the model’s capability to select tools.

4.1.3 Base models training. The language models we adopt in train-

ing are the Qwen2.5 series [3], whose sizes range from 1.5B to 7B

and 32B. We first sample 90% xLAM-60k as a seed dataset, and

employ our AugFC to generate augmented data. The combined

dataset is then used for training our model. For comparison with

other existing function calling methods, we directly adopt the open-

sourced model with different model sizes, including the xLAM [37]

series and the Hammer [13] series.

4.2 RQ1: Overall performance of data
augmentation

To evaluate the data augmentation, we compared the performance

of models trained on different datasets. Specifically, the vanilla

represents the base model, relying on the base model’s capability

to invoke a function. The src-only denotes model training based

on our sampled xLAM-60k, while the aug-only uses augmented

data based on the src-only model with our AugFC. src+aug is our

combined dataset, which is consistent with our pipeline. The overall

performance is given in Table 1.

Based on the results, we make the following observations. First,

the base model’s function calling capability fails to meet the accu-

racy requirements. Notably, the small model can hardly achieve

comparable performance with trained models, which justifies the

need to investigate this problem. Second, the src-only data performs

better than the aug-only data, indicating that the augmented data

cannot achieve comparable performance in the absence of the orig-

inal data and sometimes degrades its performance. Ultimately, our

combined dataset, which encompasses both source and augmented

data, yields the best performance on average. This further validates

the effectiveness of our AugFC.

4.3 RQ2: The number of blind spots
The key concept in AugFC is the existence of blind spots. We intro-

duce a powerful language model to generate related data and repair

blind spots. Hence, we will answer whether the number of blind

spots decreases with each iteration. We utilize three different LLMs
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Figure 4: The number of blind spots to repair with different
LLMs.

as generated LLMs, including both commercial and open-source

models, as shown in Figure 4, including Claude-4
4
, Deepseek-v3.1

5
,

and Qwen2.5-72B-instruct
6
.

Meanwhile, we also use random sampling as a comparison, which

draws data directly from users’ online queries. It is evident that

our method significantly reduces blind spots compared to random

sampling across three main LLMs. Moreover, random sampling may

introduce new blind spots due to its random nature.

4.4 RQ3: The effect of hyperparameters.
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Figure 5: The heatmap illustrating how 𝜏𝑔 and 𝜏𝑏 affects the
performance resepectively.

Referring to Definition 1, two key hyperparameters 𝜏𝑔 and 𝜏𝑏
determine the blind spot together. Therefore, we need to investigate

how these two hyperparameters affect our pipeline. We do a grid

search on two hyperparameters, where 𝜏𝑔 ∈ {1.0, 1.5, 2.0, 2.5, 3.0}
and 𝜏𝑏 ∈ {0.05, 0.1, 0.15, 0.2, 0.25} for each size of base model. The

heat maps are illustrated in Figure 5.

Notice that the 𝜏𝑔 is not the largest one that leads to better

performance. The reason is that the large one will filter out some

queries that do not need to be augmented to conquer blind spots

with data augmentation. Meanwhile, 𝜏𝑏 is not the smallest one

that leads to better performance, which indicates the difficulty in

repairing blind spots when the parameter distribution collapses too

much.

4.5 RQ4: The ablation study of AugFC
To verify the effectiveness of the components in AugFC, we con-

duct an ablation study of AugFC. The first one is w/o blind spots,
which uses random sampling instead of blind spots detection. The

second is w/o designed prompt, which uses a plain prompt without

distribution information. Lastly,w/o multi-round indicates that we

4
https://claude.ai/

5
https://chat.deepseek.com/

6
https://chat.qwen.ai/
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Model Size Training dataset API-Bank
L1

API-Bank
L2 Tool-Alpaca Seal-Tools Nexus

Raven xLAM-small Avg

Qwen2.5-1.5B

vanilla 0.6525 0.4293 0.4290 0.7491 0.4988 0.5577 0.5527

src-only 0.7826 0.6533 0.6084 0.8865 0.5348 0.5934 0.6765

aug-only 0.6973 0.4992 0.4242 0.8551 0.7500 0.6857 0.6519

src+aug 0.7226 0.6648 0.6233 0.8898 0.7840 0.7288 0.7256

Qwen2.5-7B

vanilla 0.6985 0.6036 0.6158 0.8083 0.7283 0.5914 0.6743

src-only 0.8295 0.6529 0.6745 0.9426 0.7892 0.7428 0.7719

aug-only 0.7776 0.5824 0.5808 0.9116 0.6238 0.8038 0.7133

src+aug 0.8002 0.6440 0.6667 0.9492 0.8901 0.8165 0.7856

Qwen2.5-32B

vanilla 0.7988 0.6304 0.6448 0.9339 0.8266 0.7135 0.7580

src-only 0.8325 0.5433 0.6792 0.9485 0.8807 0.7736 0.7763

aug-only 0.7771 0.5357 0.6308 0.9129 0.8624 0.8282 0.7579

src+aug 0.8416 0.6501 0.6775 0.9494 0.8682 0.8479 0.8058

Table 1: The overall performance to validate our AugFC. The vanilla denotes the base model without any training, the src-only
denotes we only use the seed data, aug-only means the augmented data is used, and src+aug represents the combined dataset.
All results are measured using the F1 score. The best results are bold, and the second-best results are underlined.

only use a single round to generate the augmented data. The results

averaged on the benchmark datasets are illustrated in Table 2.

From the results, we conclude that the designed prompt has the
most significant impact on performance, with reductions of 7.4%,

6.1%, and 4.2% on the three-sized models. The designed prompt
directly determines the quality of the generated samples. The com-

ponent of blind spots also significantly affects performance, because

it provides information on which parameters need to be augmented.

The absence of multi-round also degrades the performance, indicat-

ing that multi-round is also necessary. The overall ablation further

verifies the effectiveness of our AugFC.

Model AugFC

w/o
blind spots

w/o
designed prompt

w/o
multi-round

Qwen2.5-1.5B 0.726 0.689 0.672 0.695

Qwen2.5-7B 0.786 0.742 0.738 0.752

Qwen2.5-32B 0.806 0.765 0.772 0.780

Table 2: The ablation study of AugFC. The results are the
averages of the six benchmark datasets.

4.6 RQ5: The effectiveness of two-step method
Lastly, we conduct experiments to verify our proposed two-step

method. We compare Hammer, xLAM, and Qwen2.5 with our model

on six benchmark datasets. xLAM uses the SFT approach, further

aligning model checkpoints with the DP method. Hammer only

adopts the finetuning step. Notice that the maximum size of the

hammer series is 7B. Both xLAM-1.3B, xLAM-7B, and the Hammer

series are trained on the xLAM-60k dataset, while the Qwen2.5

models serve as the base models. The results are demonstrated in

Table 3.

The base model performs the worst, which is in accordance with

the conclusions based on Table 1. It is then clear that our training

method outperforms the other two across all model sizes, indicating

that the two-step method is superior to other finetuning methods.

5 Online experiments
Our data-driven pipeline is primarily centered on the online setting

in FiT, Tencent. We also conduct various experiments on our online

financial QA systems, which have been integrated into Yuanbao.

5.1 Online system
We first briefly present our online financial QA system in Figure 6.

The system consists of four components: planner, function call,

reranker, and generator. The planner will provide the subqueries

based on the tool list and the user query. The function call is where

our pipeline works. After our pipeline generates the tool response,

the reranker will rerank the inputs according to relevance and

other constraints. A generator will output the answer. Obviously,

the function call component mainly determines the quality of the

answer by involving tools.

5.2 Online results
In the online setting, we deploy two pipelines in the function call.

One is our data-driven pipeline, and another one is without our

pipeline. Specifically, we have an annotated dataset named on-
line_src at the beginning. After our pipeline, the augmented dataset

online_aug is then obtained. The base model only trains the model

with online_src using SFT, whereas our pipeline provides a model

with online_aug.
The online metrics encompass both automated and manual ones.

The automated ones consist of F1 score and Tool Execution Rate.
The F1 score is consistent with our offline experimental setting,

indicating accuracy. The tool execution rate refers to the success

rate of tool execution in a real-world environment, indicating the

reliability of the pipeline. The manual ones include Final answer
accuracy and GBS ratio. The final answer accuracy is checked by

determining whether the final answer is aligned with the reference
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Model Size Model Type API-Bank
L1

API-Bank
L2 Tool-Alpaca Seal-Tools Nexus

Raven xLAM-small Avg

1.5B

Qwen2.5-1.5B 0.6525 0.4293 0.4290 0.7491 0.4988 0.5577 0.5527

xLAM-1.3B-fc 0.8370 0.6432 0.5058 0.8043 0.5480 0.5368 0.6459

Hammer-1.5B 0.7230 0.5971 0.5348 0.8865 0.5688 0.5192 0.6382

ours 0.7226 0.6048 0.6233 0.8898 0.7840 0.7288 0.7256

7B

Qwen2.5-7B 0.6985 0.6036 0.6158 0.8083 0.7283 0.5914 0.6743

xLAM-7B-fc 0.8069 0.6424 0.5896 0.7687 0.5409 0.6378 0.6644

Hammer-7B 0.8311 0.6598 0.6250 0.8987 0.7464 0.6535 0.7358

ours 0.8002 0.6440 0.6667 0.9492 0.8901 0.8165 0.7856

32B

Qwen2.5-32B 0.7988 0.6304 0.6448 0.9339 0.8266 0.7135 0.7580

xLAM-2-32B-fc 0.8270 0.6000 0.6597 0.9049 0.8573 0.6985 0.7652

ours 0.8416 0.6501 0.6775 0.9494 0.8682 0.8479 0.8058

Table 3: The comparison of our two-step training model with existing models. All results are measured using the F1 score. The
best results are bold, and the second-best results are underlined.

Tools List

User Query

Planner

SUbQ-1

SUbQ-2

SUbQ-i

.....

SUbQ-3

Function Call .....

Tool-1

Tool-2

Tool-j

Tool-3
.....

.....

Reranker Generator Answer

Input SubQuery Tools Tool response

Tool response

DataBase

Figure 6: The overview illustration of the online financial QA system. Our pipeline is marked as red in the whole system.
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Figure 7: The online results measured by four metrics.

answer, ignoring the intermediate output. The GBS ratio is Good:

Bad: Same ratio, which is an evaluation metric used to assess the

impact of changes in complex systems manually.

A query will traverse the entire system, whether or not our

pipeline is involved, and the online metrics will measure both re-

sults. We evaluate 350 end-to-end query-answer pairs, which in-

volve nearly 2,000 pairs of query and tool-call list. The results are

demonstrated in Figure 7. For the automated metrics, the F1 score

improves by 39.1%, and the tool execution rate gains 40.7% im-

provements. For manual metrics, final answer accuracy gains 20.3%

improvements, and the GBS ratio has 72% good results compared

with 16% bad ones. It can be concluded that our pipeline is superior

to the baseline and meets the requirements for full deployment on

the system.

Moreover, we randomly sampled 500 instances (10% of the aug-

mented dataset) and assigned them to two experts for independent

review. 90% of the augmented data are directly usable, 6% contain

minor issues that can be easily corrected, and only 4% exhibit severe

errors requiring discarding.

6 Conclusion
In this paper, we present a data-driven pipeline to improve function

calling in LLM for our online financial QA system. The pipeline

collects online user queries to exploit the toolset and proposes a

data augmentation method, AugFC, to explore potential queries,

thereby addressing the blind spots in the query space. A two-step

training method is then introduced to enhance the capability to

call functions. We hope our work can provide practitioners with

experience of deploying LLMs in real-world scenarios, and the

data-driven approach will offer a new perspective on LLM applica-

tions. In the future, we will extend our pipeline to include multiple

tool dependencies or cross-module call scenarios to further verify

effectiveness.
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A Prompt list used in pipeline

Prompt: Tool Call Consistency Checker

## Role: You are a Tool Call Consistency Checker.

## You will receive:
- Generated user query: {{query}}
- Tool definition: {{tools}}
- Generated tool_call JSON: {{tool_call}}

## Your task:
1. Carefully read the generated user query and understand the intended action.
2. Review the tool definition to understand each parameter’s meaning and constraints.
3. Check the parameter values in tool_call:

- Do they match the intent and details in the user query?
- Are they internally consistent (no contradictions between parameters)?
- Do they comply with the tool definition (value types, required fields, allowed ranges)?

4. Decide if the tool_call is logically correct:
- If all parameters reflect the query correctly and satisfy the tool’s definition, return "Consistent".
- If there is any mismatch or logical conflict, return "Inconsistent".

## Output format requirements:
- Return a (JSON list) containing exactly one object:

[{
"analysis": "...your reasoning here...",
"result": "Consistent" or "Inconsistent"

}]

## Rules:
- Do not output anything outside the JSON list.
- Be strict - even small inconsistencies should be marked "Inconsistent".
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Prompt: Few-Shot Tool Call JSON Generator

## Role:
You are an expert assistant capable of accurately selecting and calling functions (tools) to answer questions.

## Input:
1. A set of FIVE few-shot examples, each containing:

- A user query
- A toolset with tool names, descriptions, and parameters
- The correct tool calls for that query in strict JSON list format

2. The CURRENT user query we need to process
3. The CURRENT toolset specification

## Your task:
- Carefully study the five examples to understand how queries are mapped to tool calls.
- For the CURRENT query, use ONLY the tools provided in the CURRENT toolset, along with their descriptions, to determine

the exact functions to call and the correct values of their parameters.
- Parameter values MUST be derived accurately from the query context or the tool definitions.
- If no tool is required, output an empty list: [].

## Output requirements:
- You MUST follow the exact JSON list format below.
- DO NOT include any extra explanations, comments, or text outside the JSON.
- Ensure parameter types are correct (string, integer, float, etc.).

## Expected JSON format:

[{
"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
... (more tool calls as required)

}]

### Few-shot Examples:
{{FEW_SHOT_EXAMPLES}}

### Current Query:
{{CURRENT_QUERY}}

### Current Toolset:
{{CURRENT_TOOLSET}}

Please output the JSON list strictly according to the specifications above.
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Prompt: Multi-Round Distribution-Aware Counterfactual Generation

# Role:
A specialist in mitigating data bias through multi-round distribution-aware counterfactual generation.

# Multi-Round Generation Context (Step {step}):
We are in a multi-round generation process to mitigate distribution collapse in parameter "tool_param".

## Initial State (Before Generation):
- Global Entropy: {initial_state[’global_entropy’]:.4f}
- Local Entropy: {initial_state[’local_entropy’]:.4f}
- Entropy Ratio: {initial_state[’entropy_ratio’]:.4f}

## Current State (After {step-1} rounds):
- Global Entropy: {current_state[’global_entropy’]:.4f} (change: {current_state[’global_entropy’] -

initial_state[’global_entropy’]:+.4f})
- Local Entropy: {current_state[’local_entropy’]:.4f} (change: {current_state[’local_entropy’] -

initial_state[’local_entropy’]:+.4f})
- Entropy Ratio: {current_state[’entropy_ratio’]:.4f} (change: current_state[’entropy_ratio’] -

initial_state[’entropy_ratio’]:+.4f)
- Target: Increase entropy ratio to ⩾ blind_entropy_ration_threshold
- History: {history_desc}

# Parameter Value Distributions:
## Initial Distributions:
GLobal: {initial_global_dist_desc}, Local: {initial_local_dist_desc}
## Current Distributions:
Glocal: {current_global_dist_desc}, Local: {current_local_dist_desc}

# Instructions
* Contains an instruction for tool usage: """{instruction}"""

# History
* Contains the user’s historical conversation information: """{input_text}"""

# Original Example:
- Query: "{user_query}", Tool Call: {tool_call}

# Stable Parameter Context:
To prevent creating new distribution collapses, the values for the following parameters in the ‘new_tool_call‘ MUST remain
consistent with their existing distributions.
Your primary goal is to fix ‘tool_param‘, but a CRITICAL secondary goal is to NOT disrupt these other parameters.

# Task for Round {step}:
Based on the multi-round generation progress, generate NEW data points to further increase local parameter diversity:
1. **Learn from previous rounds**: Analyze what values were generated and their impact.
2. **Focus on current gaps**: Target parameter values that are still underrepresented in local distribution.
3. **Avoid redundancy**: Don’t generate values that were already created in previous rounds.
4. **Strategic selection**: Choose values that will maximally increase the entropy ratio.
5. **Maintain coherence**: Ensure semantic consistency within the cluster context.
6. **Diversify query expressions**: Generate queries with varied linguistic forms but similar semantics, avoiding mere
entity substitution.
7. **Preserve tool_call logical coherence**: All parameter values in the generated tool_call must maintain logical
consistency.

# JSON Output Format:

[{
"new_query": "...",
"new_value_for_{tool_param.split('.')[-1]}": "...",
"new_tool_call": "...",
"step_rationale": "Strategic explanation for Round {step}"

}]
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